Python 中 {ab, abc}* 的非确定性有限自动机

Non-Deterministic Finite Automata of {ab, abc}* in Python

我一直在尝试画这个非确定性有限自动机:

语言{ab,abc}*状态数不超过3的NFA,得到下图解:

NFA diagram

问题似乎出在代码逻辑上,因为我的代码总是打印“rejected”。如果有人可以提供一些有关如何编写此算法的提示,我将不胜感激。

print("Insert below the string: ")
string = str(input())


def state_q0(string):
    if len(string) == 0:
        print("string not accepted")
    else:
        if string[0] == "a":
            state_q1(string[1:])
        elif string[0] == "b":
            print("rejected")


def state_q1(string):
    if len(string) == 0:
        print("string not accepted")
    else:
        if string[1] == "b":
            state_q2(string[2:])
        else:
            print("rejected")


def state_q2(string):
    if len(string) == 0:
        print("string not accepted")
    else:
        if string[2] == "c":
            print("accepted -> q0")
        elif string[2] == "b":
            print("rejected")


state_q0(string)

您应该始终查看字符串的第一个字符,并使用除第一个字符以外的所有内容来调用递归调用。

你的图中也没有注明,但我假设 q0 是接受状态,因为它对应于 (ab + abc)*.

所以按照你的风格(我个人不会使用,但没关系):

def q0(s):
    if not s: return "accept"  # Accepting state.
    if s[0] == "a": return q1(s[1:])
    return "reject"

def q1(s):
    if not s: return "reject"
    # NFA, must try both edges.
    if (s[0] == "b" and q0(s[1:]) == "accept" or
        s[0] == "b" and q2(s[1:]) == "accept"):
        return "accept"
    return "reject"

def q2(s):
    if not s: return "reject"
    if s[0] == "c": return q0(s[1:])
    return "reject"

然而,我将如何编写 NFA 代码如下:

transitions = [
    {"a": {1}},
    {"b": {0, 2}},
    {"c": {0}}
]
starting_state = 0
accepting_states = {0}

def nfa(w):
    cur_states = {starting_state}
    for c in w:
        if not cur_states: return "reject"
        cur_states = set.union(*
            (transitions[s].get(c, set()) for s in cur_states))
    return "accept" if cur_states & accepting_states else "reject"