Why am I getting the error ValueError: Expected input batch_size (4) to match target batch_size (64)?
Why am I getting the error ValueError: Expected input batch_size (4) to match target batch_size (64)?
为什么我收到错误 ValueError: Expected input batch_size (4) to match target batch_size (64)
?
是否与第一个线性层中的通道数不正确(?)有关?在这个例子中,我有 128 *4 *4 作为通道。
我曾尝试在网上和本网站上寻找答案,但一直找不到。所以,我在这里问了。
这是网络:
class Net(nn.Module):
"""A representation of a convolutional neural network comprised of VGG blocks."""
def __init__(self, n_channels):
super(Net, self).__init__()
# VGG block 1
self.conv1 = nn.Conv2d(n_channels, 64, (3,3))
self.act1 = nn.ReLU()
self.pool1 = nn.MaxPool2d((2,2), stride=(2,2))
# VGG block 2
self.conv2 = nn.Conv2d(64, 64, (3,3))
self.act2 = nn.ReLU()
self.pool2 = nn.MaxPool2d((2,2), stride=(2,2))
# VGG block 3
self.conv3 = nn.Conv2d(64, 128, (3,3))
self.act3 = nn.ReLU()
self.pool3 = nn.MaxPool2d((2,2), stride=(2,2))
# Fully connected layer
self.f1 = nn.Linear(128 * 4 * 4, 1000)
self.act4 = nn.ReLU()
# Output layer
self.f2 = nn.Linear(1000, 10)
self.act5 = nn.Softmax(dim=1)
def forward(self, X):
"""This function forward propagates the input."""
# VGG block 1
X = self.conv1(X)
X = self.act1(X)
X = self.pool1(X)
# VGG block 2
X = self.conv2(X)
X = self.act2(X)
X = self.pool2(X)
# VGG block 3
X = self.conv3(X)
X = self.act3(X)
X = self.pool3(X)
# Flatten
X = X.view(-1, 128 * 4 * 4)
# Fully connected layer
X = self.f1(X)
X = self.act4(X)
# Output layer
X = self.f2(X)
X = self.act5(X)
return X
这是训练循环:
def training_loop(
n_epochs,
optimizer,
model,
loss_fn,
train_loader):
for epoch in range(1, n_epochs + 1):
loss_train = 0.0
for i, (imgs, labels) in enumerate(train_loader):
outputs = model(imgs)
loss = loss_fn(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_train += loss.item()
if epoch == 1 or epoch % 10 == 0:
print('{} Epoch {}, Training loss {}'.format(
datetime.datetime.now(),
epoch,
loss_train / len(train_loader)))
那是因为你弄错了尺寸。根据错误和您的评论,我认为您的输入是 (64, 1, 28, 28)
.
的形状
现在,X = self.pool3(X)
处的 X
的形状是 (64, 128, 1, 1)
,然后您在下一行将其重塑为 (4, 128 * 4 * 4)
。
长话短说,您的模型的输出是 (4, 10)
,即 batch_size (4)
,您在此行 loss = loss_fn(outputs, labels)
上将其与 loss = loss_fn(outputs, labels)
的张量进行比较=29=] (64)
如错误所述。
我不知道你想做什么,但我猜你想把这一行 self.f1 = nn.Linear(128 * 4 * 4, 1000)
改成 self.f1 = nn.Linear(128 * 1 * 1, 1000)
为什么我收到错误 ValueError: Expected input batch_size (4) to match target batch_size (64)
?
是否与第一个线性层中的通道数不正确(?)有关?在这个例子中,我有 128 *4 *4 作为通道。
我曾尝试在网上和本网站上寻找答案,但一直找不到。所以,我在这里问了。
这是网络:
class Net(nn.Module):
"""A representation of a convolutional neural network comprised of VGG blocks."""
def __init__(self, n_channels):
super(Net, self).__init__()
# VGG block 1
self.conv1 = nn.Conv2d(n_channels, 64, (3,3))
self.act1 = nn.ReLU()
self.pool1 = nn.MaxPool2d((2,2), stride=(2,2))
# VGG block 2
self.conv2 = nn.Conv2d(64, 64, (3,3))
self.act2 = nn.ReLU()
self.pool2 = nn.MaxPool2d((2,2), stride=(2,2))
# VGG block 3
self.conv3 = nn.Conv2d(64, 128, (3,3))
self.act3 = nn.ReLU()
self.pool3 = nn.MaxPool2d((2,2), stride=(2,2))
# Fully connected layer
self.f1 = nn.Linear(128 * 4 * 4, 1000)
self.act4 = nn.ReLU()
# Output layer
self.f2 = nn.Linear(1000, 10)
self.act5 = nn.Softmax(dim=1)
def forward(self, X):
"""This function forward propagates the input."""
# VGG block 1
X = self.conv1(X)
X = self.act1(X)
X = self.pool1(X)
# VGG block 2
X = self.conv2(X)
X = self.act2(X)
X = self.pool2(X)
# VGG block 3
X = self.conv3(X)
X = self.act3(X)
X = self.pool3(X)
# Flatten
X = X.view(-1, 128 * 4 * 4)
# Fully connected layer
X = self.f1(X)
X = self.act4(X)
# Output layer
X = self.f2(X)
X = self.act5(X)
return X
这是训练循环:
def training_loop(
n_epochs,
optimizer,
model,
loss_fn,
train_loader):
for epoch in range(1, n_epochs + 1):
loss_train = 0.0
for i, (imgs, labels) in enumerate(train_loader):
outputs = model(imgs)
loss = loss_fn(outputs, labels)
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_train += loss.item()
if epoch == 1 or epoch % 10 == 0:
print('{} Epoch {}, Training loss {}'.format(
datetime.datetime.now(),
epoch,
loss_train / len(train_loader)))
那是因为你弄错了尺寸。根据错误和您的评论,我认为您的输入是 (64, 1, 28, 28)
.
现在,X = self.pool3(X)
处的 X
的形状是 (64, 128, 1, 1)
,然后您在下一行将其重塑为 (4, 128 * 4 * 4)
。
长话短说,您的模型的输出是 (4, 10)
,即 batch_size (4)
,您在此行 loss = loss_fn(outputs, labels)
上将其与 loss = loss_fn(outputs, labels)
的张量进行比较=29=] (64)
如错误所述。
我不知道你想做什么,但我猜你想把这一行 self.f1 = nn.Linear(128 * 4 * 4, 1000)
改成 self.f1 = nn.Linear(128 * 1 * 1, 1000)