根据R中不同行的其他变量值的组合计算不同行的变量值的差异

Calculate difference of variable values from different rows based on combination of other variables' values from different rows in R

我在 data.table 中有 idperiod 识别的不平衡面板数据。有 8,278 个观察值和 230 个变量。

我想知道我的数据中的公司(由 id 标识)从计划进入市场(plan_entry == "yes",包含 NAs)到他们实际进入市场(enter_market == "yes",不包含 NA)。

因此,我想生成例如time_to_entry == 5 如果一家公司计划在 period == 4 进入市场并在 period == 9 最终进入市场。数据的大致结构如下,并且已经包含了所需的输出变量。请注意,公司可能会在未说明任何先前计划的情况下进入市场。也可能是他们有进入新市场的计划,同期进入新市场。在这两种情况下,我都想要 time_to_entry == 0。如果一家公司从未进入任何市场,它也应该为 0。

示例数据和预期结果

library(data.table)

desired_output <- 
  data.table(id = as.factor(c(rep("C001", 3), "C002", rep("C003", 5), rep("C004", 2), rep("C005", 7))),
             period = as.factor(c(1, 2, 3, 2, 1, 4, 5, 6, 10, 3, 4, 2, 3, 4, 7, 8, 9, 10)),
             plan_entry = as.factor(c(rep(NA, 2), "yes", "no", NA, rep("no", 2), rep("yes", 4), rep(NA, 2), rep("yes", 4), "no")),
             enter_market = as.factor(c(rep("no", 3), "yes", rep("no", 5), rep("yes", 2), rep("no", 5), rep("yes", 2))),
             time_to_entry = c(rep(0, 10), 1, rep(0, 5), 5, 1))

desired_output
#      id period plan_entry enter_market time_to_entry
# 1: C001      1       <NA>           no             0
# 2: C001      2       <NA>           no             0
# 3: C001      3        yes           no             0
# 4: C002      2         no          yes             0
# 5: C003      1       <NA>           no             0
# 6: C003      4         no           no             0
# 7: C003      5         no           no             0
# 8: C003      6        yes           no             0
# 9: C003     10        yes           no             0
#10: C004      3        yes          yes             0     ! there might be cases 
# where companies enter a market without stating any plans to do so in previous periods
#11: C004      4        yes          yes             1 
#12: C005      2       <NA>           no             0
#13: C005      3       <NA>           no             0
#14: C005      4        yes           no             0
#15: C005      7        yes           no             0
#16: C005      8        yes           no             0
#17: C005      9        yes          yes             5
#18: C005     10         no          yes             1       

问题描述

因此,我需要一个命令来查找第一个 period,其中 plan_entry == "yes" 用于特定的 id,然后在以下 period 中搜索 enter_market == "yes" 并计算各自 period 之间的差异并将其存储在 time_to_entry 中。然后,它应该从这个 period 开始,寻找下一个 plan_entry == "yes" 特定的 id (这可能是公司进入市场的同一时期。但是,这种情况应该不被考虑,而只被认为是下一个时期 enter_market == "yes".) 等等

有人知道怎么做吗?

不完整的分步方法

下面我尝试了另一种方法,但它没有考虑所有的要求,因为它只考虑公司第一次进入市场。我也很乐意了解 data.table 方法。

  1. 搜索每个公司的 dt$enter_market == "yes" 的最短期限
library(data.table)
library(dplyr)

# generate almost same dataset but without desired variable time_to_entry
dt <- 
  data.table(id = as.factor(c(rep("C001", 3), "C002", rep("C003", 5), rep("C004", 2), rep("C005", 7))),
             period = as.factor(c(1, 2, 3, 2, 1, 4, 5, 6, 10, 3, 4, 2, 3, 4, 7, 8, 9, 10)),
             plan_entry = as.factor(c(rep(NA, 2), "yes", "no", NA, rep("no", 2), rep("yes", 4), rep(NA, 2), rep("yes", 4), "no")),
             enter_market = as.factor(c(rep("no", 3), "yes", rep("no", 5), rep("yes", 2), rep("no", 5), rep("yes", 2))))


# generate minimum period by company
dt[, min_period := min(as.numeric(period)), by = id] 

# make data.table a data.frame
dt <- as.data.frame(dt)

# use dplyr
dt <-
  dt %>%
  group_by(id, enter_market) %>% # group data by id and market entry
  mutate(min_entry_period =  min(as.numeric(period))) # generate minimum period for grouped data

# minimum period for companies where plan_entry == "yes"
dt$entry_period <-
  ifelse(
    dt$min_period != dt$min_entry_period & dt$plan_entry == "yes",
    dt$min_entry_period,
    NA)

dt
# A tibble: 18 x 8
# Groups:   id, enter_market [6]
#   id    period plan_entry enter_market time_to_entry min_period min_entry_period entry_period
#   <fct> <fct>  <fct>      <fct>                <dbl>      <dbl>            <dbl>        <dbl>
# 1 C001  1      NA         no                       0          1                1           NA
# 2 C001  2      NA         no                       0          1                1           NA
# 3 C001  3      yes        no                       0          1                1           NA
# 4 C002  2      no         yes                      0          2                2           NA
# 5 C003  1      NA         no                       0          1                1           NA
# 6 C003  4      no         no                       0          1                1           NA
# 7 C003  5      no         no                       0          1                1           NA
# 8 C003  6      yes        no                       0          1                1           NA
# 9 C003  10     yes        no                       0          1                1           NA
#10 C004  3      yes        yes                      0          3                3           NA
#11 C004  4      yes        yes                      1          3                3           NA
#12 C005  2      NA         no                       0          2                2           NA
#13 C005  3      NA         no                       0          2                2           NA
#14 C005  4      yes        no                       0          2                2           NA
#15 C005  7      yes        no                       0          2                2           NA
#16 C005  8      yes        no                       0          2                2           NA
#17 C005  9      yes        yes                      5          2                9            9
#18 C005  10     no         yes                      0          2                9           NA
  1. dt$plan_entry ==“是”的所有时期
dt$plan_entry_period <-
  ifelse(dt$plan_entry == "yes", dt$period, NA)

  1. 对于每个 dt$plan_entry == "yes" 的公司计算 entry_period – plan_entry_period
# fill in first entry_period for each observation by company
library(zoo) # for na.locf()

dt <- as.data.table(dt)
dt[, entry_period := na.locf(entry_period, na.rm = FALSE, fromLast = FALSE), by = id]
dt[, entry_period := na.locf(entry_period, na.rm = FALSE, fromLast = TRUE), by = id]

dt$time_to_entry <-
  ifelse(
    dt$plan_entry == "yes", 
    dt$entry_period - dt$plan_entry_period,
    NA)

# check variable
summary(dt$time_to_entry)

dt
#      id period plan_entry enter_market min_period min_entry_period entry_period plan_entry_period time_to_entry
# 1: C001      1       <NA>           no          1                1           NA                NA            NA
# 2: C001      2       <NA>           no          1                1           NA                NA            NA
# 3: C001      3        yes           no          1                1           NA                 3            NA
# 4: C002      2         no          yes          2                2           NA                NA             0
# 5: C003      1       <NA>           no          1                1           NA                NA            NA
# 6: C003      4         no           no          1                1           NA                NA             0
# 7: C003      5         no           no          1                1           NA                NA             0
# 8: C003      6        yes           no          1                1           NA                 6            NA
# 9: C003     10        yes           no          1                1           NA                10            NA
#10: C004      3        yes          yes          3                3           NA                 3            NA
#11: C004      4        yes          yes          3                3           NA                 4            NA
#12: C005      2       <NA>           no          2                2            9                NA            NA
#13: C005      3       <NA>           no          2                2            9                NA            NA
#14: C005      4        yes           no          2                2            9                 4             5
#15: C005      7        yes           no          2                2            9                 7             2
#16: C005      8        yes           no          2                2            9                 8             1
#17: C005      9        yes          yes          2                9            9                 9             0
#18: C005     10         no          yes          2                9            9                NA             0

显然,time_to_entrydesired_result 数据集相比看起来非常不同。

我希望我能够很好地描述问题。我真的很感激任何建议!提前致谢!

这是一个可以重现您的 desired_result

的解决方案
dt <- 
  data.table(id = as.factor(c(rep("C001", 3), "C002", rep("C003", 5), rep("C004", 2), rep("C005", 7))),
             period = as.numeric(c(1, 2, 3, 2, 1, 4, 5, 6, 10, 3, 4, 2, 3, 4, 7, 8, 9, 10)),
             plan_entry = as.factor(c(rep(NA, 2), "yes", "no", NA, rep("no", 2), rep("yes", 4), rep(NA, 2), rep("yes", 4), "no")),
             enter_market = as.factor(c(rep("no", 3), "yes", rep("no", 5), rep("yes", 2), rep("no", 5), rep("yes", 2))))

dt[, time_to_entry_with_plan := period - min(period),
   by = .(id,plan_entry)]

dt[, time_to_entry_without_plan := period - min(period),
   by = .(id,enter_market)]

dt[, time_to_entry:=fcase(enter_market == "yes" & plan_entry == "yes", time_to_entry_with_plan,
                          enter_market == "yes" & plan_entry == "no", time_to_entry_without_plan,
                          default = 0)]

结果:

     id period plan_entry enter_market time_to_entry_with_plan time_to_entry_without_plan time_to_entry
 1: C001      1       <NA>           no                       0                          0             0
 2: C001      2       <NA>           no                       1                          1             0
 3: C001      3        yes           no                       0                          2             0
 4: C002      2         no          yes                       0                          0             0
 5: C003      1       <NA>           no                       0                          0             0
 6: C003      4         no           no                       0                          3             0
 7: C003      5         no           no                       1                          4             0
 8: C003      6        yes           no                       0                          5             0
 9: C003     10        yes           no                       4                          9             0
10: C004      3        yes          yes                       0                          0             0
11: C004      4        yes          yes                       1                          1             1
12: C005      2       <NA>           no                       0                          0             0
13: C005      3       <NA>           no                       1                          1             0
14: C005      4        yes           no                       0                          2             0
15: C005      7        yes           no                       3                          5             0
16: C005      8        yes           no                       4                          6             0
17: C005      9        yes          yes                       5                          0             5
18: C005     10         no          yes                       0                          1             1

这是一个使用非等值连接的选项:

#find the previous latest enter_market before current row
DT[enter_market=="yes", prev_entry := 
    fcoalesce(.SD[.SD, on=.(id, period<period), mult="last", x.period], 0L)
]

#non-equi join to find the first plan_entry before current enter_market but after previous latest enter_market
DT[enter_market=="yes", plan_period :=
    DT[plan_entry=="yes"][.SD, on=.(id, period>=prev_entry, period<period), mult="first", x.period]
]

#calculate time_to_entry and set NAs to 0
DT[, time_to_entry := fcoalesce(period - plan_period, 0L)]

DT

数据(不含因素):

DT <- 
    data.table(id = c(rep("C001", 3), "C002", rep("C003", 5), rep("C004", 2), rep("C005", 7)),
        period = as.integer(c(1, 2, 3, 2, 1, 4, 5, 6, 10, 3, 4, 2, 3, 4, 7, 8, 9, 10)),
        plan_entry = c(rep(NA, 2), "yes", "no", NA, rep("no", 2), rep("yes", 4), rep(NA, 2), rep("yes", 4), "no"),
        enter_market = c(rep("no", 3), "yes", rep("no", 5), rep("yes", 2), rep("no", 5), rep("yes", 2)))