Spark 为数据框连接指定多列条件

Spark specify multiple column conditions for dataframe join

如何在连接两个数据框时提供更多的列条件。例如,我想要 运行 以下内容:

val Lead_all = Leads.join(Utm_Master,  
    Leaddetails.columns("LeadSource","Utm_Source","Utm_Medium","Utm_Campaign") ==
    Utm_Master.columns("LeadSource","Utm_Source","Utm_Medium","Utm_Campaign"),
"left")

我只想在这些列匹配时加入。但是上面的语法是无效的,因为 cols 只接受一个字符串。那么我要怎样才能得到我想要的。

你可以做的一件事是使用原始 SQL:

case class Bar(x1: Int, y1: Int, z1: Int, v1: String)
case class Foo(x2: Int, y2: Int, z2: Int, v2: String)

val bar = sqlContext.createDataFrame(sc.parallelize(
    Bar(1, 1, 2, "bar") :: Bar(2, 3, 2, "bar") ::
    Bar(3, 1, 2, "bar") :: Nil))

val foo = sqlContext.createDataFrame(sc.parallelize(
    Foo(1, 1, 2, "foo") :: Foo(2, 1, 2, "foo") ::
    Foo(3, 1, 2, "foo") :: Foo(4, 4, 4, "foo") :: Nil))

foo.registerTempTable("foo")
bar.registerTempTable("bar")

sqlContext.sql(
    "SELECT * FROM foo LEFT JOIN bar ON x1 = x2 AND y1 = y2 AND z1 = z2")

这种情况有一个 Spark column/expression API join

Leaddetails.join(
    Utm_Master, 
    Leaddetails("LeadSource") <=> Utm_Master("LeadSource")
        && Leaddetails("Utm_Source") <=> Utm_Master("Utm_Source")
        && Leaddetails("Utm_Medium") <=> Utm_Master("Utm_Medium")
        && Leaddetails("Utm_Campaign") <=> Utm_Master("Utm_Campaign"),
    "left"
)

示例中的 <=> 运算符表示“Equality test that is safe for null values”。

与简单 Equality test (===) 的主要区别是第一个可以安全使用,以防其中一列可能有空值。

从 Spark 版本 1.5.0(当前未发布)开始,您可以连接多个 DataFrame 列。参考SPARK-7990: Add methods to facilitate equi-join on multiple join keys.

Python

Leads.join(
    Utm_Master, 
    ["LeadSource","Utm_Source","Utm_Medium","Utm_Campaign"],
    "left_outer"
)

Scala

问题要求 Scala 回答,但我不使用 Scala。这是我最好的猜测....

Leads.join(
    Utm_Master,
    Seq("LeadSource","Utm_Source","Utm_Medium","Utm_Campaign"),
    "left_outer"
)

Scala:

Leaddetails.join(
    Utm_Master, 
    Leaddetails("LeadSource") <=> Utm_Master("LeadSource")
        && Leaddetails("Utm_Source") <=> Utm_Master("Utm_Source")
        && Leaddetails("Utm_Medium") <=> Utm_Master("Utm_Medium")
        && Leaddetails("Utm_Campaign") <=> Utm_Master("Utm_Campaign"),
    "left"
)

不区分大小写,

import org.apache.spark.sql.functions.{lower, upper}

然后在join方法的条件中使用lower(value)即可。

例如:dataFrame.filter(lower(dataFrame.col("vendor")).equalTo("fortinet"))

Pyspark 中,您可以简单地分别指定每个条件:

val Lead_all = Leads.join(Utm_Master,  
    (Leaddetails.LeadSource == Utm_Master.LeadSource) &
    (Leaddetails.Utm_Source == Utm_Master.Utm_Source) &
    (Leaddetails.Utm_Medium == Utm_Master.Utm_Medium) &
    (Leaddetails.Utm_Campaign == Utm_Master.Utm_Campaign))

请务必正确使用运算符和括号。

Spark SQL 支持在括号中连接列的元组,例如

... WHERE (list_of_columns1) = (list_of_columns2)

这比为由一组 "AND" 组合的每对列指定相等表达式 (=) 更短。

例如:

SELECT a,b,c
FROM    tab1 t1
WHERE 
   NOT EXISTS
   (    SELECT 1
        FROM    t1_except_t2_df e
        WHERE (t1.a, t1.b, t1.c) = (e.a, e.b, e.c)
   )

而不是

SELECT a,b,c
FROM    tab1 t1
WHERE 
   NOT EXISTS
   (    SELECT 1
        FROM    t1_except_t2_df e
        WHERE t1.a=e.a AND t1.b=e.b AND t1.c=e.c
   )

这也不太可读,尤其是当列列表很大并且您想轻松处理 NULL 时。

=== 选项为我提供了重复的列。所以我改用 Seq

val Lead_all = Leads.join(Utm_Master,
    Seq("Utm_Source","Utm_Medium","Utm_Campaign"),"left")

当然,这只有在连接列的名称相同时才有效。

试试这个:

val rccJoin=dfRccDeuda.as("dfdeuda")
.join(dfRccCliente.as("dfcliente")
,col("dfdeuda.etarcid")===col("dfcliente.etarcid") 
&& col("dfdeuda.etarcid")===col("dfcliente.etarcid"),"inner")

Pyspark 中,在每个条件周围使用括号是在连接条件中使用多个列名的关键。

joined_df = df1.join(df2, 
    (df1['name'] == df2['name']) &
    (df1['phone'] == df2['phone'])
)