有没有办法 运行 多个 t.tests 产生的结果可以很容易地以 table 格式存储?

Is there a way to run multiple t.tests that produce results that can be easily stored in table format?

我正在处理一组数据,我想对其进行子集化和比较 t 检验。最终目标是将易于阅读的 table 作为输出呈现给 reader.

目前我正在使用一次给出一个结果的单独 t 检验,例如下面的代码。

t.test(survey$numericDV[survey$condition == 0 & survey$partisan_guess == "Republican"], survey$numericDV[survey$condition == 1 & survey$partisan_guess == "Republican"])

$condition 是一个因子变量,有 5 个水平,从 0 到 4,$partisan_guess 是一个有 2 个水平的因子。目标是 运行 t 测试将条件 == 0 与其他 4 个级别进行比较,并能够指定要使用 partisan_guess 的哪个级别。

有没有办法同时 运行 这些测试中的每一个,将结果存储在 table 中,即我会得到 table,其中列出了 t 测试的结果条件 0 对条件 1,条件 0 对条件 2,等等

在此先感谢您的帮助!

最小可复制数据:

survey <- structure(list(numericDVedu = c(0, 0, 1, 1, 0, 1, 0, 1, 1, 1,  0, 0,
                                         1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0,  0, 1, 1, 1,
                                         0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0,  0, 0, 1, 1, 0, 1,
                                         0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0,  0, 0, 0, 1, 0, 0, 0, 0,
                                         1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1,  0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
                                         0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,  0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
                                         0, 0, 1, 0, 0, 0, 0, 1, 0,  0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
                                         0, 0, 1, 0, 0, 1, 0,  0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
                                         0, 1, 0, 1, 1,  0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1,
                                         1, 1, 0,  0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
                                         0,  1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0,  0,
                                         0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1,  0, 0, 0,
                                         0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0,  0, 0, 0, 0, 1,
                                         1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0,  0, 0, 1, 0, 1, 1, 0,
                                         0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,  0, 0, 0, 0, 0), condition =
                           structure(c(5L, 4L, 2L, 5L, 1L, 1L,  2L, 3L, 2L, 2L, 5L, 2L, 3L, 1L,
                                        5L, 4L, 5L, 2L, 4L, 4L, 1L, 2L,  3L, 5L, 2L, 4L, 5L, 4L, 5L, 5L, 5L,
                                        2L, 1L, 4L, 3L, 5L, 2L, 5L,  1L, 4L, 2L, 3L, 2L, 5L, 1L, 2L, 1L, 2L,
                                        3L, 1L, 2L, 4L, 3L, 5L,  3L, 4L, 1L, 5L, 1L, 2L, 4L, 2L, 2L, 3L, 4L,
                                        3L, 1L, 2L, 3L, 2L,  4L, 2L, 1L, 5L, 4L, 1L, 3L, 5L, 4L, 3L, 2L, 4L,
                                        5L, 3L, 4L, 2L,  4L, 2L, 4L, 3L, 5L, 2L, 3L, 1L, 1L, 1L, 3L, 5L, 5L,
                                        3L, 1L, 3L,  2L, 3L, 4L, 5L, 2L, 2L, 1L, 1L, 5L, 5L, 2L, 4L, 5L, 3L,
                                        1L, 4L,  5L, 3L, 4L, 1L, 5L, 3L, 1L, 2L, 1L, 3L, 5L, 3L, 1L, 2L, 4L,
                                        4L,  1L, 3L, 4L, 5L, 3L, 3L, 5L, 4L, 2L, 3L, 5L, 4L, 1L, 5L, 3L, 4L, 
                                        2L, 4L, 5L, 3L, 4L, 2L, 4L, 5L, 3L, 2L, 1L, 2L, 4L, 1L, 3L, 5L,  2L,
                                        1L, 3L, 4L, 1L, 2L, 4L, 5L, 2L, 2L, 3L, 3L, 5L, 1L, 2L, 5L,  2L, 3L,
                                        4L, 2L, 4L, 1L, 3L, 4L, 1L, 4L, 1L, 5L, 4L, 2L, 2L, 5L,  1L, 4L, 5L,
                                        3L, 1L, 1L, 4L, 5L, 3L, 2L, 1L, 1L, 5L, 1L, 4L, 5L,  3L, 4L, 5L, 3L,
                                        1L, 5L, 2L, 4L, 5L, 1L, 4L, 1L, 3L, 2L, 4L, 3L,  5L, 5L, 1L, 4L, 1L,
                                        3L, 4L, 5L, 1L, 3L, 1L, 3L, 4L, 2L, 3L, 3L,  2L, 3L, 2L, 4L, 5L, 2L,
                                        4L, 5L, 1L, 2L, 5L, 3L, 2L, 3L, 5L, 4L,  1L, 3L, 4L, 5L, 1L, 2L, 5L,
                                        5L, 3L, 1L, 4L, 5L, 3L, 2L, 1L, 1L,  4L, 5L, 1L, 2L, 1L, 3L, 1L, 5L,
                                        2L, 2L, 5L, 1L, 3L, 4L, 3L, 1L,  3L, 2L, 1L, 2L, 5L, 3L, 1L, 4L, 2L,
                                        3L, 1L, 2L, 3L, 4L, 1L, 3L,  2L, 5L, 1L, 4L, 5L, 1L, 2L, 1L, 2L, 4L,
                                        5L, 5L, 3L, 5L, 4L, 2L,  4L, 3L, 5L, 2L), .Label = c("0", "1", "2",
                                                                                                "3", "4"), class = "factor"), 
                           partisan_guess = structure(c(2L, 1L, 2L, 2L, 2L, 2L, 2L, 
                                                                1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 
                                                                1L, 2L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 2L, 1L, 
                                                                1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 
                                                                2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 
                                                                2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 
                                                                2L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 
                                                                2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 
                                                                2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 
                                                                2L, 2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 
                                                                2L, 1L, 2L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 2L, 
                                                                2L, 2L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 
                                                                2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 
                                                                2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 
                                                                2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 
                                                                2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 2L, 
                                                                2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 
                                                                2L, 2L, 1L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 1L, 
                                                                1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L, 
                                                                2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 
                                                                2L, 2L, 1L, 2L, 1L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 1L, 1L, 
                                                                2L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 
                                                                1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L), .Label = c("Democrat", "Republican"
                                                                                                                  ), class = "factor")), class = "data.frame", row.names = c(NA, -330L))
 

我们可以编写一个函数来针对条件 0 对每个条件应用 t.test

run_t_test <- function(data, partisan_guess) {

  data <- subset(data, partisan_guess == partisan_guess)
  zero_data <- data$numericDV[survey$condition == 0]
  purrr::map_df(1:4, function(x) broom::tidy(t.test(
         zero_data, data$numericDV[survey$condition == x])), .id = 'condition')
}

run_t_test(survey, 'Republican')
# A tibble: 4 x 11
#  condition estimate estimate1 estimate2 statistic p.value parameter conf.low
#  <chr>        <dbl>     <dbl>     <dbl>     <dbl>   <dbl>     <dbl>    <dbl>
#1 1          -0.0490     0.333     0.382    -0.588   0.557      132.  -0.214 
#2 2          -0.113      0.333     0.446    -1.32    0.188      128.  -0.282 
#3 3           0.0635     0.333     0.270     0.782   0.436      127.  -0.0972
#4 4           0.0980     0.333     0.235     1.25    0.212      130.  -0.0565
# … with 3 more variables: conf.high <dbl>, method <chr>, alternative <chr>

run_t_test(survey, 'Democrat')

# A tibble: 4 x 11
#  condition estimate estimate1 estimate2 statistic p.value parameter conf.low
#  <chr>        <dbl>     <dbl>     <dbl>     <dbl>   <dbl>     <dbl>    <dbl>
#1 1          -0.0490     0.333     0.382    -0.588   0.557      132.  -0.214 
#2 2          -0.113      0.333     0.446    -1.32    0.188      128.  -0.282 
#3 3           0.0635     0.333     0.270     0.782   0.436      127.  -0.0972
#4 4           0.0980     0.333     0.235     1.25    0.212      130.  -0.0565
# … with 3 more variables: conf.high <dbl>, method <chr>, alternative <chr>