如何将 MariaDB Connector/J 与 Pyspark 一起用于 JDBC?
How to use MariaDB Connector/J with Pyspark for JDBC?
我在 Ubuntu 18.04 上使用 Pyspark Spark 3.0.1,并希望使用 JDBC.
将数据导出到 MariaDB 服务器
我在 pyspark 命令行上指定 Connector/J jar,如下所示:
$ pyspark --jars /usr/share/java/mariadb-java-client.jar
但是,当我使用 JDBC 连接时,出现以下错误:
>>> df1 = sc.parallelize([[1,2,3], [2,3,4]]).toDF(("a", "b", "c"))
>>> df1.write.format("jdbc") \
... .mode("overwrite") \
... .option("url", "jdbc:mariadb://localhost:3306/testDatabase?user=foo&password=bar") \
... .option("dbtable", "example") \
... .save()
Traceback (most recent call last):
File "<stdin>", line 4, in <module>
File "/opt/spark/python/pyspark/sql/readwriter.py", line 825, in save
self._jwrite.save()
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py", line 1305, in __call__
File "/opt/spark/python/pyspark/sql/utils.py", line 128, in deco
return f(*a, **kw)
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o60.save.
: java.sql.SQLException: No suitable driver
at java.sql.DriverManager.getDriver(DriverManager.java:315)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.$anonfun$driverClass(JDBCOptions.scala:105)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:105)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcOptionsInWrite.<init>(JDBCOptions.scala:194)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcOptionsInWrite.<init>(JDBCOptions.scala:198)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:45)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:46)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:90)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute(SparkPlan.scala:175)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery(SparkPlan.scala:213)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:122)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:121)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand(DataFrameWriter.scala:963)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId(SQLExecution.scala:87)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:963)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:415)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:399)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
>>>
因为 java.sql.SQLException: No suitable driver
我假设我需要一些额外的配置才能调用 Connector/J。我不知道如何去做。有什么诀窍?
您需要在写入时使用 driver
选项指定 mariadb 驱动程序 class org.mariadb.jdbc.Driver
:
df1.write.format("jdbc") \
.mode("overwrite") \
.option("driver", "org.mariadb.jdbc.Driver") \
.option("url", "jdbc:mysql://localhost:3306/testDatabase?user=foo&password=bar") \
.option("dbtable", "example") \
.save()
请参阅文档中的 Usage。
对于仍然面临此错误的任何人,
在 url 中使用 mysql,而不是 mariadb。
jdbc url 应该像 jdbc:mysql:{host} ...
代替 jdbc:mariadb:{host} ...
。
我在 Ubuntu 18.04 上使用 Pyspark Spark 3.0.1,并希望使用 JDBC.
将数据导出到 MariaDB 服务器我在 pyspark 命令行上指定 Connector/J jar,如下所示:
$ pyspark --jars /usr/share/java/mariadb-java-client.jar
但是,当我使用 JDBC 连接时,出现以下错误:
>>> df1 = sc.parallelize([[1,2,3], [2,3,4]]).toDF(("a", "b", "c"))
>>> df1.write.format("jdbc") \
... .mode("overwrite") \
... .option("url", "jdbc:mariadb://localhost:3306/testDatabase?user=foo&password=bar") \
... .option("dbtable", "example") \
... .save()
Traceback (most recent call last):
File "<stdin>", line 4, in <module>
File "/opt/spark/python/pyspark/sql/readwriter.py", line 825, in save
self._jwrite.save()
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py", line 1305, in __call__
File "/opt/spark/python/pyspark/sql/utils.py", line 128, in deco
return f(*a, **kw)
File "/opt/spark/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o60.save.
: java.sql.SQLException: No suitable driver
at java.sql.DriverManager.getDriver(DriverManager.java:315)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.$anonfun$driverClass(JDBCOptions.scala:105)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:105)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcOptionsInWrite.<init>(JDBCOptions.scala:194)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcOptionsInWrite.<init>(JDBCOptions.scala:198)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:45)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:46)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:70)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:68)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:90)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$execute(SparkPlan.scala:175)
at org.apache.spark.sql.execution.SparkPlan.$anonfun$executeQuery(SparkPlan.scala:213)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:210)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:171)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:122)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:121)
at org.apache.spark.sql.DataFrameWriter.$anonfun$runCommand(DataFrameWriter.scala:963)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId(SQLExecution.scala:100)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId(SQLExecution.scala:87)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:963)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:415)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:399)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
>>>
因为 java.sql.SQLException: No suitable driver
我假设我需要一些额外的配置才能调用 Connector/J。我不知道如何去做。有什么诀窍?
您需要在写入时使用 driver
选项指定 mariadb 驱动程序 class org.mariadb.jdbc.Driver
:
df1.write.format("jdbc") \
.mode("overwrite") \
.option("driver", "org.mariadb.jdbc.Driver") \
.option("url", "jdbc:mysql://localhost:3306/testDatabase?user=foo&password=bar") \
.option("dbtable", "example") \
.save()
请参阅文档中的 Usage。
对于仍然面临此错误的任何人,
在 url 中使用 mysql,而不是 mariadb。
jdbc url 应该像 jdbc:mysql:{host} ...
代替 jdbc:mariadb:{host} ...
。