R 中汇总数据置信区间的计数器循环
Counter loops for summary data Confidence Intervals in R
我正在尝试使用 for 循环作为重复计数器来将汇总数据添加到测试样本中。我尝试使用 data.frame、矩阵和向量将我的数据推出 for 循环并填充 table。我得到的最好结果是在向量中填充一个完整的列,并在数据框中完成除一行以外的所有列。
#try empty vector to populate
large.sample.df <- vector(mode = "double", length = 1000)
#try matrix to populate
large.matrix <- matrix(nrow = 1000, ncol = 3)
matrix.names <- c("mean", "lwr", "upr")
colnames(large.matrix) <- matrix.names
#Try dataframe to populate
large.df <- data.frame(mean="", lwr="", upr="")
#set total length
n <- length(large.sample.df)
#use functions to calculate confidence interval
lwr.ci <- function(a) (mean(a) - 1.96 * (sd(a)/sqrt(length(a))))
upp.ci <- function(a) (mean(a) + 1.96 * (sd(a)/sqrt(length(a))))
#Start new seed count
set.seed(1234)
#begin for loop for mean, lwr, upr CI
for (i in 1:n) {
large.sample <- rgamma(n = 1000, shape = 4, rate = 2)
large.df$mean[i] <- mean(large.sample)
large.df$lwr[i] <- lwr.ci(large.sample)
large.df$upr[i] <- upp.ci(large.sample)
}
这里有两种方法可以得到你想要的东西。首先我们要区分样本大小和样本数量:
set.seed(1234)
n <- 1000
samples <- 10 # Keep this small for testing and then increase it
s <- 4
r <- 2
首先你的循环方法:
results <- data.frame(mean=NA, lwr=NA, upr=NA) # Not "" which makes the variables character strings
set.seed(1234)
for (i in 1:samples) {
x <- rgamma(n, shape = s, rate = r)
mn <- mean(x)
sder <- sd(x)/sqrt(n)
lwr <- mn - 1.96 * sder
upr <- mn + 1.96 * sder
results[i, ] <- c(mn, lwr, upr)
}
results
# mean lwr upr
# 1 2.015193688 1.952431714 2.077955663
# 2 2.024218250 1.962404608 2.086031891
# 3 2.008401293 1.948363928 2.068438658
# 4 1.993061142 1.932020588 2.054101696
# 5 1.975824831 1.912961486 2.038688176
# 6 1.983761126 1.923583927 2.043938325
# 7 1.983166350 1.924890819 2.041441880
# 8 1.975453269 1.915336118 2.035570420
# 9 1.976118333 1.915025748 2.037210918
# 10 2.044088839 1.983435628 2.104742050
现在使用 replicate
confint <- function(n, s, r) {
x <- rgamma(n, shape = s, rate = r)
mn <- mean(x)
sder <- sd(x)/sqrt(n)
lwr <- mn - 1.96 * sder
upr <- mn + 1.96 * sder
return(c(mean=mn, lwr=lwr, upr=upr))
}
confint(n, s, r) # Test the function
# mean lwr upr
# 1.974328366 1.914003710 2.034653023
set.seed(1234)
results <- replicate(samples, confint(n, s, r))
results <- t(results)
results
# mean lwr upr
# [1,] 2.015193688 1.952431714 2.077955663
# [2,] 2.024218250 1.962404608 2.086031891
# [3,] 2.008401293 1.948363928 2.068438658
# [4,] 1.993061142 1.932020588 2.054101696
# [5,] 1.975824831 1.912961486 2.038688176
# [6,] 1.983761126 1.923583927 2.043938325
# [7,] 1.983166350 1.924890819 2.041441880
# [8,] 1.975453269 1.915336118 2.035570420
# [9,] 1.976118333 1.915025748 2.037210918
# [10,] 2.044088839 1.983435628 2.104742050
两种方法都同意。
我正在尝试使用 for 循环作为重复计数器来将汇总数据添加到测试样本中。我尝试使用 data.frame、矩阵和向量将我的数据推出 for 循环并填充 table。我得到的最好结果是在向量中填充一个完整的列,并在数据框中完成除一行以外的所有列。
#try empty vector to populate
large.sample.df <- vector(mode = "double", length = 1000)
#try matrix to populate
large.matrix <- matrix(nrow = 1000, ncol = 3)
matrix.names <- c("mean", "lwr", "upr")
colnames(large.matrix) <- matrix.names
#Try dataframe to populate
large.df <- data.frame(mean="", lwr="", upr="")
#set total length
n <- length(large.sample.df)
#use functions to calculate confidence interval
lwr.ci <- function(a) (mean(a) - 1.96 * (sd(a)/sqrt(length(a))))
upp.ci <- function(a) (mean(a) + 1.96 * (sd(a)/sqrt(length(a))))
#Start new seed count
set.seed(1234)
#begin for loop for mean, lwr, upr CI
for (i in 1:n) {
large.sample <- rgamma(n = 1000, shape = 4, rate = 2)
large.df$mean[i] <- mean(large.sample)
large.df$lwr[i] <- lwr.ci(large.sample)
large.df$upr[i] <- upp.ci(large.sample)
}
这里有两种方法可以得到你想要的东西。首先我们要区分样本大小和样本数量:
set.seed(1234)
n <- 1000
samples <- 10 # Keep this small for testing and then increase it
s <- 4
r <- 2
首先你的循环方法:
results <- data.frame(mean=NA, lwr=NA, upr=NA) # Not "" which makes the variables character strings
set.seed(1234)
for (i in 1:samples) {
x <- rgamma(n, shape = s, rate = r)
mn <- mean(x)
sder <- sd(x)/sqrt(n)
lwr <- mn - 1.96 * sder
upr <- mn + 1.96 * sder
results[i, ] <- c(mn, lwr, upr)
}
results
# mean lwr upr
# 1 2.015193688 1.952431714 2.077955663
# 2 2.024218250 1.962404608 2.086031891
# 3 2.008401293 1.948363928 2.068438658
# 4 1.993061142 1.932020588 2.054101696
# 5 1.975824831 1.912961486 2.038688176
# 6 1.983761126 1.923583927 2.043938325
# 7 1.983166350 1.924890819 2.041441880
# 8 1.975453269 1.915336118 2.035570420
# 9 1.976118333 1.915025748 2.037210918
# 10 2.044088839 1.983435628 2.104742050
现在使用 replicate
confint <- function(n, s, r) {
x <- rgamma(n, shape = s, rate = r)
mn <- mean(x)
sder <- sd(x)/sqrt(n)
lwr <- mn - 1.96 * sder
upr <- mn + 1.96 * sder
return(c(mean=mn, lwr=lwr, upr=upr))
}
confint(n, s, r) # Test the function
# mean lwr upr
# 1.974328366 1.914003710 2.034653023
set.seed(1234)
results <- replicate(samples, confint(n, s, r))
results <- t(results)
results
# mean lwr upr
# [1,] 2.015193688 1.952431714 2.077955663
# [2,] 2.024218250 1.962404608 2.086031891
# [3,] 2.008401293 1.948363928 2.068438658
# [4,] 1.993061142 1.932020588 2.054101696
# [5,] 1.975824831 1.912961486 2.038688176
# [6,] 1.983761126 1.923583927 2.043938325
# [7,] 1.983166350 1.924890819 2.041441880
# [8,] 1.975453269 1.915336118 2.035570420
# [9,] 1.976118333 1.915025748 2.037210918
# [10,] 2.044088839 1.983435628 2.104742050
两种方法都同意。