drake gurobi 无法处理二次约束

drake gurobi cannot handle quadratic constraint

我目前正在努力对优化问题实施简单的二次约束。 Gurobi's website 表示可以实现二次约束。 drake 没有使用 Gurobi 的此约束的接口吗?

代码如下

#include <Eigen/Dense>
#include <math.h>
#include <iostream>

#include "drake/solvers/mathematical_program.h"
#include "drake/solvers/solve.h"
#include "drake/solvers/gurobi_solver.h"
#include "drake/solvers/scs_solver.h"

using namespace std;
using namespace Eigen;
using namespace drake;

int main(){
    solvers::MathematicalProgram prog; 

    // Instantiate the decision variables
    solvers::VectorXDecisionVariable x = prog.NewContinuousVariables(2, "x");

    // Define constraints 
    for(int i = 0; i < 2; i++){
      prog.AddConstraint(x[i]*x[i] <= 2); //Replacing this with a linear constraint 
                                          //such as prog.AddLinearConstraint(-5 <= x[i] && x[i] <= 5); 
                                          //will work
    }

    // Define the cost
    MatrixXd Q(2,2);
    Q << 2, 1,
         1, 4;
    VectorXd b(2);
    b << 0, 3;
    double c = 1.0;
    prog.AddQuadraticCost(Q, b, c, x);

    solvers::GurobiSolver solver;
    cout << "Gurobi available? " << solver.is_enabled() << endl;

    auto result = solver.Solve(prog);
    cout << "Is optimization successful?" << result.is_success() << endl;
    cout << "Optimal x: " << result.GetSolution().transpose() << endl;
    cout << "solver is: " << result.get_solver_id().name() << endl;
    cout << "computation time is: " << result.get_solver_details<solvers::GurobiSolver>().optimizer_time;

    return 0;
}

可能 https://github.com/RobotLocomotion/drake/issues/6341 上的(尚未实现的)功能请求是您要查找的内容?

Drake 目前(有意)不支持二次约束。为了获得更好的求解器性能,我建议重新制定没有二次约束但具有二阶锥约束的优化问题。

首先是二次约束

xᵀx <= a²

这可以看作是一个洛伦兹锥约束

(y, x) is in the Lorentz cone
y = a

在 Drake 中,您可以将此约束添加为

prog.AddLorentzConeConstraint((drake::VectorX<drake::symbolic::Expression>(x.rows() + 1) << a, x).finished());

对于更一般的二次约束0.5xᵀQx + bᵀx + c<=0,我们还提供了AddQuadraticAsRotatedLorentzConeConstraint,它施加了一个旋转的洛伦兹锥约束。

prog.AddQuadraticAsRotatedLorentzConeConstraint(Q, b, c, x);

对于二次成本

min 0.5xᵀQx + bᵀx + c

您还可以将其重新表述为具有旋转洛伦兹锥约束的线性成本

min z
z >= 0.5xᵀQx + bᵀx + c

在德雷克中,代码是

z = prog.NewContinuousVariables<1>()(0);
prog.AddLinearCost(z);
prog.AddRotatedLorentzConeConstraint(symbolic::Expression(z), symbolic::Expression(1), 0.5 * x.dot(Q * x) + b.dot(x) + c);

我们更喜欢洛伦兹锥约束而不是二次约束二次规划 (QCQP) 的原因是,使用洛伦兹锥约束,您最终会遇到二阶圆锥优化问题 (SOCP) ,就其对偶形式而言,这个优化问题有很多很好的特征。您可以阅读 Alizadeh 的论文 paper for more details. And Mosek also recommends SOCP over QCQP https://docs.mosek.com/9.2/rmosek/prob-def-quadratic.html#a-recommendation