R 创建列组合之间的综合 table 相关性

R creating a comprehensive table of correlation between combinations of columns

这是我的数据集。我在看棒球数据。

structure(list(INDEX = 1:6, TARGET_WINS = c(39L, 70L, 86L, 70L, 
82L, 75L), TEAM_BATTING_H = c(1445L, 1339L, 1377L, 1387L, 1297L, 
1279L), TEAM_BATTING_2B = c(194L, 219L, 232L, 209L, 186L, 200L
), TEAM_BATTING_3B = c(39L, 22L, 35L, 38L, 27L, 36L), TEAM_BATTING_HR = c(13L, 
190L, 137L, 96L, 102L, 92L), TEAM_BATTING_BB = c(143L, 685L, 
602L, 451L, 472L, 443L), TEAM_BATTING_SO = c(842L, 1075L, 917L, 
922L, 920L, 973L), TEAM_BASERUN_SB = c(NA, 37L, 46L, 43L, 49L, 
107L), TEAM_BASERUN_CS = c(NA, 28L, 27L, 30L, 39L, 59L), TEAM_BATTING_HBP = c(NA_integer_, 
NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_
), TEAM_PITCHING_H = c(9364L, 1347L, 1377L, 1396L, 1297L, 1279L
), TEAM_PITCHING_HR = c(84L, 191L, 137L, 97L, 102L, 92L), TEAM_PITCHING_BB = c(927L, 
689L, 602L, 454L, 472L, 443L), TEAM_PITCHING_SO = c(5456L, 1082L, 
917L, 928L, 920L, 973L), TEAM_FIELDING_E = c(1011L, 193L, 175L, 
164L, 138L, 123L), TEAM_FIELDING_DP = c(NA, 155L, 153L, 156L, 
168L, 149L)), row.names = c(NA, 6L), class = "data.frame")

我正在尝试创建多元线性回归并决定要包含哪些预测变量。问题是,我认为其中一些变量将真正相互关联。例如,其中一列是“击球手的基本安打(任何类型的安打)”,另一列是“击球手的双打”等等。所以我认为如果一个玩家得分双倍,它会在多个不同的列中检查 +1。

我试图弄清楚要包括哪些变量,我想到的一个策略是确定这些变量中的哪些变量彼此相关,以及它们的相关强度。也许我不会包括彼此真正密切相关的变量。 (对此有帮助吗?)

我开始走这条路,一个一个地看皮尔逊相关:

cor(moneyball_training_data$TEAM_BATTING_H, moneyball_training_data$TEAM_BATTING_2B)

cor(moneyball_training_data$TEAM_BATTING_H, moneyball_training_data$TEAM_BATTING_3B)

cor(moneyball_training_data$TEAM_BATTING_H, moneyball_training_data$TEAM_BATTING_HR)

但后来我看到所有这些变量之间有多少排列!此数据框中有 16 列,我想 select 任意两列:16! / (2! (16 - 2)!) 如果我的数学是正确的,那么通过这种方法执行这将是 120 行代码,并且很容易纠结并且忘记我已经完成了哪些代码。 ..所以效率不高。

所以我最初的问题是:是否有任何有效的编码方法来比较数据帧中变量之间的综合相关集?

然后我在 Stack Overflow 上找到了 ,我认为它回答了我的问题,但我仍然不能完全让它工作。

旁注 - 我还试图找出哪些列具有 NA 值,以防此处的 NA 值有所不同。

any(is.na(moneyball_training_data$TARGET_WINS)) # FALSE
any(is.na(moneyball_training_data$TEAM_BATTING_H)) # FALSE
any(is.na(moneyball_training_data$TEAM_BATTING_2B)) # FALSE
any(is.na(moneyball_training_data$TEAM_BATTING_3B)) # FALSE
any(is.na(moneyball_training_data$TEAM_BATTING_HR)) # FALSE
any(is.na(moneyball_training_data$TEAM_BATTING_BB)) # FALSE
any(is.na(moneyball_training_data$TEAM_BATTING_SO)) # TRUE
any(is.na(moneyball_training_data$TEAM_BATTING_SB)) # FALSE
any(is.na(moneyball_training_data$TEAM_BATTING_CS)) # FALSE
any(is.na(moneyball_training_data$TEAM_BATTING_HBP)) # TRUE
any(is.na(moneyball_training_data$TEAM_PITCHING_H)) # FALSE
any(is.na(moneyball_training_data$TEAM_PITCHING_HR)) # FALSE
any(is.na(moneyball_training_data$TEAM_PITCHING_BB)) # FALSE
any(is.na(moneyball_training_data$TEAM_PITCHING_SO))# TRUE
any(is.na(moneyball_training_data$TEAM_FIELDING_E)) # FALSE
any(is.na(moneyball_training_data$TEAM_FIELDING_DP)) # TRUE

(旁注 - 是否有更有效的方法来执行此操作(is.na))代码?)

为了继续,我现在按照另一个 Stack Overflow 答案的方向,即 tidy 方法,我不太理解,但给出答案的人看起来很聪明:

# function to use later (to filter out rows)
f = function(x,y) grepl(x,y)
f = Vectorize(f)

moneyball_training_data %>% 
  select(-INDEX) %>%                # remove unnecessary columns
  cor() %>%                      # get all correlations (even ones you don't care about)
  data.frame() %>%               # save result as a dataframe
  mutate(v1 = row.names(.)) %>%  # add row names as a column
  gather(v2,cor, -v1) %>%        # reshape data
  filter(f(v1,v2) & v1 != v2)

但是结果怎么可能只是一个 3 x 3 的数据框呢?我期望像下面的图那样,其中每个数字都是 x 和 y 的相关性,其中删除了多余的空白空间。

   1     2   3    4    5    6     7
1       12   13  14   15   16    17
2            23  24   25   26    27
3                34   35   36    37
4                     45   46    47
5                          56    57
6                                67
7

这样的矩阵你期待吗?

df <- structure(list(INDEX = 1:6, TARGET_WINS = c(39L, 70L, 86L, 70L, 
82L, 75L), TEAM_BATTING_H = c(1445L, 1339L, 1377L, 1387L, 1297L, 
1279L), TEAM_BATTING_2B = c(194L, 219L, 232L, 209L, 186L, 200L
), TEAM_BATTING_3B = c(39L, 22L, 35L, 38L, 27L, 36L), TEAM_BATTING_HR = c(13L, 
190L, 137L, 96L, 102L, 92L), TEAM_BATTING_BB = c(143L, 685L, 
602L, 451L, 472L, 443L), TEAM_BATTING_SO = c(842L, 1075L, 917L, 
922L, 920L, 973L), TEAM_BASERUN_SB = c(NA, 37L, 46L, 43L, 49L, 
107L), TEAM_BASERUN_CS = c(NA, 28L, 27L, 30L, 39L, 59L), TEAM_BATTING_HBP = c(NA_integer_, 
NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_
), TEAM_PITCHING_H = c(9364L, 1347L, 1377L, 1396L, 1297L, 1279L
), TEAM_PITCHING_HR = c(84L, 191L, 137L, 97L, 102L, 92L), TEAM_PITCHING_BB = c(927L, 
689L, 602L, 454L, 472L, 443L), TEAM_PITCHING_SO = c(5456L, 1082L, 
917L, 928L, 920L, 973L), TEAM_FIELDING_E = c(1011L, 193L, 175L, 
164L, 138L, 123L), TEAM_FIELDING_DP = c(NA, 155L, 153L, 156L, 
168L, 149L)), row.names = c(NA, 6L), class = "data.frame")

# install.packages("corrr")
library(corrr)
df1 <- corrr::correlate(df, method = "pearson")

# 1. Output:
# A tibble: 17 x 18
   term    INDEX TARGET_WINS TEAM_BATTING_H TEAM_BATTING_2B TEAM_BATTING_3B TEAM_BATTING_HR TEAM_BATTING_BB
   <chr>   <dbl>       <dbl>          <dbl>           <dbl>           <dbl>           <dbl>           <dbl>
 1 INDEX NA          0.642           -0.820         -0.291           0.0236          0.0826           0.205
 2 TARG~  0.642     NA               -0.685          0.367          -0.373           0.673            0.788
 3 TEAM~ -0.820     -0.685           NA              0.192           0.496          -0.449           -0.502
 4 TEAM~ -0.291      0.367            0.192         NA              -0.0789          0.640            0.653
 5 TEAM~  0.0236    -0.373            0.496         -0.0789         NA              -0.752           -0.676
 6 TEAM~  0.0826     0.673           -0.449          0.640          -0.752          NA                0.984
 7 TEAM~  0.205      0.788           -0.502          0.653          -0.676           0.984           NA    
 8 TEAM~  0.134      0.401           -0.560          0.377          -0.754           0.864            0.799
 9 TEAM~  0.790     -0.00267         -0.690         -0.356           0.413          -0.528           -0.541
10 TEAM~  0.874     -0.0332          -0.834         -0.598           0.261          -0.578           -0.623
11 TEAM~ NA         NA               NA             NA              NA              NA               NA    
12 TEAM~ -0.662     -0.923            0.733         -0.358           0.448          -0.771           -0.852
13 TEAM~ -0.352      0.308           -0.127          0.661          -0.767           0.891            0.809
14 TEAM~ -0.914     -0.793            0.736          0.0225          0.0863         -0.341           -0.464
15 TEAM~ -0.667     -0.930            0.719         -0.360           0.424          -0.757           -0.842
16 TEAM~ -0.707     -0.925            0.757         -0.314           0.418          -0.733           -0.820
17 TEAM~  0.0666     0.265           -0.144         -0.583          -0.447          -0.123           -0.150

快速回答隐藏在这个 post 中的一个附带问题:更有效的方法来查找其中包含 NA 值的列,而不是逐一查找

moneyball_training_data %>% summarise(across(, ~ any(is.na(.x))))