R 中的线性优化,Stigler 饮食问题
Linear optimization in R, Stigler diet problem
有人试过在 R 中复制 The Stigler Diet problen 吗?
到目前为止,这是我所拥有的:
library(lpSolve)
library(linprog)
# where d is the nutrients data frame found in the above link
f.obj_ <- d$`1939 price (cents) `
f.con_ <- matrix(c( d$Calories,
d$`Protein (g)`,
d$`Calcium (g)`,
d$`Iron (mg)`,
d$`Vitamin A (IU)`,
d$`Thiamine (mg)` ,
d$`Riboflavin (mg)` ,
d$`Niacin (mg)`,
d$`Ascorbic Acid (mg)`), nrow = 9, byrow = TRUE)
f.dir <- rep(">=", 9)
f.rhs <- c(3.0, 70.0, 0.8, 12.0, 5.0, 1.8, 2.7, 18.0, 75.0)
lp("min", f.obj_, f.con_, f.dir, f.rhs)
# returns: 0.7164608
我的猜测是 Python 代码使用了与 lpSolve 不同的优化器(Glop 方法)。 R 中是否有 Glop 优化器允许我从 Py 代码复制结果?
虽然我还没有复制这个,但我已经计划这样做很长时间了。现在你的问题是一个很好的理由,让我离开了 Netflix。
这是一个使用 lpSolveAPI
的解决方案:
library(lpSolveAPI)
# minimum requirements
requirements <- c(
calories=3, protein=70, calcium=0.8, iron=12,
vit_a=5, vit_b1=1.8, vit_b2=2.7,
vit_b3=18, vit_c=75
)
# nutrition data
dat <- data.frame(
commodity=c(
"Wheat Flour (Enriched)", "Macaroni", "Wheat Cereal (Enriched)",
"Corn Flakes", "Corn Meal", "Hominy Grits", "Rice", "Rolled Oats",
"White Bread (Enriched)", "Whole Wheat Bread", "Rye Bread",
"Pound Cake", "Soda Crackers", "Milk", "Evaporated Milk (can)",
"Butter", "Oleomargarine", "Eggs", "Cheese (Cheddar)", "Cream",
"Peanut Butter", "Mayonnaise", "Crisco", "Lard", "Sirloin Steak",
"Round Steak", "Rib Roast", "Chuck Roast", "Plate", "Liver (Beef)",
"Leg of Lamb", "Lamb Chops (Rib)", "Pork Chops", "Pork Loin Roast",
"Bacon", "Ham, smoked", "Salt Pork", "Roasting Chicken",
"Veal Cutlets", "Salmon, Pink (can)", "Apples", "Bananas",
"Lemons", "Oranges", "Green Beans", "Cabbage", "Carrots",
"Celery", "Lettuce", "Onions", "Potatoes", "Spinach", "Sweet Potatoes",
"Peaches (can)", "Pears (can)", "Pineapple (can)", "Asparagus (can)",
"Green Beans (can)", "Pork and Beans (can)", "Corn (can)",
"Peas (can)", "Tomatoes (can)", "Tomato Soup (can)", "Peaches, Dried",
"Prunes, Dried", "Raisins, Dried", "Peas, Dried", "Lima Beans, Dried",
"Navy Beans, Dried", "Coffee", "Tea", "Cocoa", "Chocolate",
"Sugar", "Corn Syrup", "Molasses", "Strawberry Preserves"
),
unit=c(
"10 lb.", "1 lb.", "28 oz.", "8 oz.", "1 lb.", "24 oz.",
"1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.",
"1 qt.", "14.5 oz.", "1 lb.", "1 lb.", "1 doz.", "1 lb.",
"1/2 pt.", "1 lb.", "1/2 pt.", "1 lb.", "1 lb.", "1 lb.",
"1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.",
"1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.",
"16 oz.", "1 lb.", "1 lb.", "1 doz.", "1 doz.", "1 lb.",
"1 lb.", "1 bunch", "1 stalk", "1 head", "1 lb.", "15 lb.",
"1 lb.", "1 lb.", "No. 2 1/2", "No. 2 1/2", "No. 2 1/2",
"No. 2", "No. 2", "16 oz.", "No. 2", "No. 2", "No. 2", "10 1/2 oz.",
"1 lb.", "1 lb.", "15 oz.", "1 lb.", "1 lb.", "1 lb.", "1 lb.",
"1/4 lb.", "8 oz.", "8 oz.", "10 lb.", "24 oz.", "18 oz.",
"1 lb."
),
price=c(
36, 14.1, 24.2, 7.1, 4.6, 8.5, 7.5, 7.1, 7.9, 9.1,
9.1, 24.8, 15.1, 11, 6.7, 30.8, 16.1, 32.6, 24.2, 14.1, 17.9,
16.7, 20.3, 9.8, 39.6, 36.4, 29.2, 22.6, 14.6, 26.8, 27.6,
36.6, 30.7, 24.2, 25.6, 27.4, 16, 30.3, 42.3, 13, 4.4, 6.1,
26, 30.9, 7.1, 3.7, 4.7, 7.3, 8.2, 3.6, 34, 8.1, 5.1, 16.8,
20.4, 21.3, 27.7, 10, 7.1, 10.4, 13.8, 8.6, 7.6, 15.7, 9,
9.4, 7.9, 8.9, 5.9, 22.4, 17.4, 8.6, 16.2, 51.7, 13.7, 13.6,
20.5
),
calories=c(44.7, 11.6, 11.8, 11.4, 36, 28.6, 21.2, 25.3, 15, 12.2,
12.4, 8, 12.5, 6.1, 8.4, 10.8, 20.6, 2.9, 7.4, 3.5, 15.7,
8.6, 20.1, 41.7, 2.9, 2.2, 3.4, 3.6, 8.5, 2.2, 3.1, 3.3,
3.5, 4.4, 10.4, 6.7, 18.8, 1.8, 1.7, 5.8, 5.8, 4.9, 1, 2.2,
2.4, 2.6, 2.7, 0.9, 0.4, 5.8, 14.3, 1.1, 9.6, 3.7, 3, 2.4,
0.4, 1, 7.5, 5.2, 2.3, 1.3, 1.6, 8.5, 12.8, 13.5, 20, 17.4,
26.9, 0, 0, 8.7, 8, 34.9, 14.7, 9, 6.4
),
protein=c(
1411, 418, 377, 252,
897, 680, 460, 907, 488, 484, 439, 130, 288, 310, 422, 9,
17, 238, 448, 49, 661, 18, 0, 0, 166, 214, 213, 309, 404,
333, 245, 140, 196, 249, 152, 212, 164, 184, 156, 705, 27,
60, 21, 40, 138, 125, 73, 51, 27, 166, 336, 106, 138, 20,
8, 16, 33, 54, 364, 136, 136, 63, 71, 87, 99, 104, 1367,
1055, 1691, 0, 0, 237, 77, 0, 0, 0, 11
),
calcium=c(
2, 0.7, 14.4, 0.1,
1.7, 0.8, 0.6, 5.1, 2.5, 2.7, 1.1, 0.4, 0.5, 10.5, 15.1,
0.2, 0.6, 1, 16.4, 1.7, 1, 0.2, 0, 0, 0.1, 0.1, 0.1, 0.2,
0.2, 0.2, 0.1, 0.1, 0.2, 0.3, 0.2, 0.2, 0.1, 0.1, 0.1, 6.8,
0.5, 0.4, 0.5, 1.1, 3.7, 4, 2.8, 3, 1.1, 3.8, 1.8, 0, 2.7,
0.4, 0.3, 0.4, 0.3, 2, 4, 0.2, 0.6, 0.7, 0.6, 1.7, 2.5, 2.5,
4.2, 3.7, 11.4, 0, 0, 3, 1.3, 0, 0.5, 10.3, 0.4
),
iron=c(
365, 54, 175, 56, 99, 80, 41, 341, 115, 125, 82, 31, 50, 18, 9, 3,
6, 52, 19, 3, 48, 8, 0, 0, 34, 32, 33, 46, 62, 139, 20, 15,
30, 37, 23, 31, 26, 30, 24, 45, 36, 30, 14, 18, 80, 36, 43,
23, 22, 59, 118, 138, 54, 10, 8, 8, 12, 65, 134, 16, 45,
38, 43, 173, 154, 136, 345, 459, 792, 0, 0, 72, 39, 0, 74, 244, 7
),
vit_a=c(
0, 0, 0, 0, 30.9, 0, 0, 0, 0, 0, 0, 18.9, 0, 16.8,
26, 44.2, 55.8, 18.6, 28.1, 16.9, 0, 2.7, 0, 0.2, 0.2, 0.4,
0, 0.4, 0, 169.2, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 3.5, 7.3,
17.4, 0, 11.1, 69, 7.2, 188.5, 0.9, 112.4, 16.6, 6.7, 918.4,
290.7, 21.5, 0.8, 2, 16.3, 53.9, 3.5, 12, 34.9, 53.2, 57.9,
86.8, 85.7, 4.5, 2.9, 5.1, 0, 0, 0, 0, 0, 0, 0, 0, 0.2
),
vit_b1=c(
55.4, 3.2, 14.4, 13.5, 17.4, 10.6, 2, 37.1, 13.8, 13.9, 9.9, 2.8,
0, 4, 3, 0, 0.2, 2.8, 0.8, 0.6, 9.6, 0.4, 0, 0, 2.1, 2.5,
0, 1, 0.9, 6.4, 2.8, 1.7, 17.4, 18.2, 1.8, 9.9, 1.4, 0.9,
1.4, 1, 3.6, 2.5, 0.5, 3.6, 4.3, 9, 6.1, 1.4, 1.8, 4.7, 29.4,
5.7, 8.4, 0.5, 0.8, 2.8, 1.4, 1.6, 8.3, 1.6, 4.9, 3.4, 3.5,
1.2, 3.9, 6.3, 28.7, 26.9, 38.4, 4, 0, 2, 0.9, 0, 0, 1.9, 0.2
),
vit_b2=c(
33.3, 1.9, 8.8, 2.3, 7.9, 1.6, 4.8, 8.9, 8.5, 6.4, 3,
3, 0, 16, 23.5, 0.2, 0, 6.5, 10.3, 2.5, 8.1, 0.5, 0, 0.5,
2.9, 2.4, 2, 4, 0, 50.8, 3.9, 2.7, 2.7, 3.6, 1.8, 3.3, 1.8,
1.8, 2.4, 4.9, 2.7, 3.5, 0, 1.3, 5.8, 4.5, 4.3, 1.4, 3.4,
5.9, 7.1, 13.8, 5.4, 1, 0.8, 0.8, 2.1, 4.3, 7.7, 2.7, 2.5,
2.5, 2.4, 4.3, 4.3, 1.4, 18.4, 38.2, 24.6, 5.1, 2.3, 11.9,
3.4, 0, 0, 7.5, 0.4
),
vit_b3=c(
441, 68, 114, 68, 106, 110, 60, 64,
126, 160, 66, 17, 0, 7, 11, 2, 0, 1, 4, 0, 471, 0, 0, 5,
69, 87, 0, 120, 0, 316, 86, 54, 60, 79, 71, 50, 0, 68, 57,
209, 5, 28, 4, 10, 37, 26, 89, 9, 11, 21, 198, 33, 83, 31,
5, 7, 17, 32, 56, 42, 37, 36, 67, 55, 65, 24, 162, 93, 217,
50, 42, 40, 14, 0, 5, 146, 3
),
vit_c=c(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 177, 60, 0, 0, 0, 0,
17, 0, 0, 0, 0, 0, 0, 0,
0, 0, 525, 0, 0, 0, 0, 0, 0, 0, 46, 0, 0, 544, 498, 952,
1998, 862, 5369, 608, 313, 449, 1184, 2522, 2755, 1912, 196,
81, 399, 272, 431, 0, 218, 370, 1253, 862, 57, 257, 136,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
),
stringsAsFactors=FALSE
)
rownames(dat) <- dat[,"commodity"]
dat[,"commodity"] <- NULL
# formulate problem
lprec <- lpSolveAPI::make.lp(ncol=nrow(dat))
lpSolveAPI::lp.control(lprec, sense='min')
lpSolveAPI::set.objfn(lprec, rep(1, nrow(dat)))
for (req in names(requirements)) {
lpSolveAPI::add.constraint(lprec, dat[,req], ">=", requirements[req])
}
# solve
status <- lpSolveAPI::solve.lpExtPtr(lprec)
stopifnot(status==0)
message("cost per year ($): ", lpSolveAPI::get.objective(lprec)*365.25)
diet <- lpSolveAPI::get.variables(lprec)
names(diet) <- rownames(dat)
diet <- diet[diet>0]
我认为如果营养数据是每单位而不是每美元,问题会更有启发性。
有人试过在 R 中复制 The Stigler Diet problen 吗?
到目前为止,这是我所拥有的:
library(lpSolve)
library(linprog)
# where d is the nutrients data frame found in the above link
f.obj_ <- d$`1939 price (cents) `
f.con_ <- matrix(c( d$Calories,
d$`Protein (g)`,
d$`Calcium (g)`,
d$`Iron (mg)`,
d$`Vitamin A (IU)`,
d$`Thiamine (mg)` ,
d$`Riboflavin (mg)` ,
d$`Niacin (mg)`,
d$`Ascorbic Acid (mg)`), nrow = 9, byrow = TRUE)
f.dir <- rep(">=", 9)
f.rhs <- c(3.0, 70.0, 0.8, 12.0, 5.0, 1.8, 2.7, 18.0, 75.0)
lp("min", f.obj_, f.con_, f.dir, f.rhs)
# returns: 0.7164608
我的猜测是 Python 代码使用了与 lpSolve 不同的优化器(Glop 方法)。 R 中是否有 Glop 优化器允许我从 Py 代码复制结果?
虽然我还没有复制这个,但我已经计划这样做很长时间了。现在你的问题是一个很好的理由,让我离开了 Netflix。
这是一个使用 lpSolveAPI
的解决方案:
library(lpSolveAPI)
# minimum requirements
requirements <- c(
calories=3, protein=70, calcium=0.8, iron=12,
vit_a=5, vit_b1=1.8, vit_b2=2.7,
vit_b3=18, vit_c=75
)
# nutrition data
dat <- data.frame(
commodity=c(
"Wheat Flour (Enriched)", "Macaroni", "Wheat Cereal (Enriched)",
"Corn Flakes", "Corn Meal", "Hominy Grits", "Rice", "Rolled Oats",
"White Bread (Enriched)", "Whole Wheat Bread", "Rye Bread",
"Pound Cake", "Soda Crackers", "Milk", "Evaporated Milk (can)",
"Butter", "Oleomargarine", "Eggs", "Cheese (Cheddar)", "Cream",
"Peanut Butter", "Mayonnaise", "Crisco", "Lard", "Sirloin Steak",
"Round Steak", "Rib Roast", "Chuck Roast", "Plate", "Liver (Beef)",
"Leg of Lamb", "Lamb Chops (Rib)", "Pork Chops", "Pork Loin Roast",
"Bacon", "Ham, smoked", "Salt Pork", "Roasting Chicken",
"Veal Cutlets", "Salmon, Pink (can)", "Apples", "Bananas",
"Lemons", "Oranges", "Green Beans", "Cabbage", "Carrots",
"Celery", "Lettuce", "Onions", "Potatoes", "Spinach", "Sweet Potatoes",
"Peaches (can)", "Pears (can)", "Pineapple (can)", "Asparagus (can)",
"Green Beans (can)", "Pork and Beans (can)", "Corn (can)",
"Peas (can)", "Tomatoes (can)", "Tomato Soup (can)", "Peaches, Dried",
"Prunes, Dried", "Raisins, Dried", "Peas, Dried", "Lima Beans, Dried",
"Navy Beans, Dried", "Coffee", "Tea", "Cocoa", "Chocolate",
"Sugar", "Corn Syrup", "Molasses", "Strawberry Preserves"
),
unit=c(
"10 lb.", "1 lb.", "28 oz.", "8 oz.", "1 lb.", "24 oz.",
"1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.",
"1 qt.", "14.5 oz.", "1 lb.", "1 lb.", "1 doz.", "1 lb.",
"1/2 pt.", "1 lb.", "1/2 pt.", "1 lb.", "1 lb.", "1 lb.",
"1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.",
"1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.", "1 lb.",
"16 oz.", "1 lb.", "1 lb.", "1 doz.", "1 doz.", "1 lb.",
"1 lb.", "1 bunch", "1 stalk", "1 head", "1 lb.", "15 lb.",
"1 lb.", "1 lb.", "No. 2 1/2", "No. 2 1/2", "No. 2 1/2",
"No. 2", "No. 2", "16 oz.", "No. 2", "No. 2", "No. 2", "10 1/2 oz.",
"1 lb.", "1 lb.", "15 oz.", "1 lb.", "1 lb.", "1 lb.", "1 lb.",
"1/4 lb.", "8 oz.", "8 oz.", "10 lb.", "24 oz.", "18 oz.",
"1 lb."
),
price=c(
36, 14.1, 24.2, 7.1, 4.6, 8.5, 7.5, 7.1, 7.9, 9.1,
9.1, 24.8, 15.1, 11, 6.7, 30.8, 16.1, 32.6, 24.2, 14.1, 17.9,
16.7, 20.3, 9.8, 39.6, 36.4, 29.2, 22.6, 14.6, 26.8, 27.6,
36.6, 30.7, 24.2, 25.6, 27.4, 16, 30.3, 42.3, 13, 4.4, 6.1,
26, 30.9, 7.1, 3.7, 4.7, 7.3, 8.2, 3.6, 34, 8.1, 5.1, 16.8,
20.4, 21.3, 27.7, 10, 7.1, 10.4, 13.8, 8.6, 7.6, 15.7, 9,
9.4, 7.9, 8.9, 5.9, 22.4, 17.4, 8.6, 16.2, 51.7, 13.7, 13.6,
20.5
),
calories=c(44.7, 11.6, 11.8, 11.4, 36, 28.6, 21.2, 25.3, 15, 12.2,
12.4, 8, 12.5, 6.1, 8.4, 10.8, 20.6, 2.9, 7.4, 3.5, 15.7,
8.6, 20.1, 41.7, 2.9, 2.2, 3.4, 3.6, 8.5, 2.2, 3.1, 3.3,
3.5, 4.4, 10.4, 6.7, 18.8, 1.8, 1.7, 5.8, 5.8, 4.9, 1, 2.2,
2.4, 2.6, 2.7, 0.9, 0.4, 5.8, 14.3, 1.1, 9.6, 3.7, 3, 2.4,
0.4, 1, 7.5, 5.2, 2.3, 1.3, 1.6, 8.5, 12.8, 13.5, 20, 17.4,
26.9, 0, 0, 8.7, 8, 34.9, 14.7, 9, 6.4
),
protein=c(
1411, 418, 377, 252,
897, 680, 460, 907, 488, 484, 439, 130, 288, 310, 422, 9,
17, 238, 448, 49, 661, 18, 0, 0, 166, 214, 213, 309, 404,
333, 245, 140, 196, 249, 152, 212, 164, 184, 156, 705, 27,
60, 21, 40, 138, 125, 73, 51, 27, 166, 336, 106, 138, 20,
8, 16, 33, 54, 364, 136, 136, 63, 71, 87, 99, 104, 1367,
1055, 1691, 0, 0, 237, 77, 0, 0, 0, 11
),
calcium=c(
2, 0.7, 14.4, 0.1,
1.7, 0.8, 0.6, 5.1, 2.5, 2.7, 1.1, 0.4, 0.5, 10.5, 15.1,
0.2, 0.6, 1, 16.4, 1.7, 1, 0.2, 0, 0, 0.1, 0.1, 0.1, 0.2,
0.2, 0.2, 0.1, 0.1, 0.2, 0.3, 0.2, 0.2, 0.1, 0.1, 0.1, 6.8,
0.5, 0.4, 0.5, 1.1, 3.7, 4, 2.8, 3, 1.1, 3.8, 1.8, 0, 2.7,
0.4, 0.3, 0.4, 0.3, 2, 4, 0.2, 0.6, 0.7, 0.6, 1.7, 2.5, 2.5,
4.2, 3.7, 11.4, 0, 0, 3, 1.3, 0, 0.5, 10.3, 0.4
),
iron=c(
365, 54, 175, 56, 99, 80, 41, 341, 115, 125, 82, 31, 50, 18, 9, 3,
6, 52, 19, 3, 48, 8, 0, 0, 34, 32, 33, 46, 62, 139, 20, 15,
30, 37, 23, 31, 26, 30, 24, 45, 36, 30, 14, 18, 80, 36, 43,
23, 22, 59, 118, 138, 54, 10, 8, 8, 12, 65, 134, 16, 45,
38, 43, 173, 154, 136, 345, 459, 792, 0, 0, 72, 39, 0, 74, 244, 7
),
vit_a=c(
0, 0, 0, 0, 30.9, 0, 0, 0, 0, 0, 0, 18.9, 0, 16.8,
26, 44.2, 55.8, 18.6, 28.1, 16.9, 0, 2.7, 0, 0.2, 0.2, 0.4,
0, 0.4, 0, 169.2, 0, 0, 0, 0, 0, 0, 0, 0.1, 0, 3.5, 7.3,
17.4, 0, 11.1, 69, 7.2, 188.5, 0.9, 112.4, 16.6, 6.7, 918.4,
290.7, 21.5, 0.8, 2, 16.3, 53.9, 3.5, 12, 34.9, 53.2, 57.9,
86.8, 85.7, 4.5, 2.9, 5.1, 0, 0, 0, 0, 0, 0, 0, 0, 0.2
),
vit_b1=c(
55.4, 3.2, 14.4, 13.5, 17.4, 10.6, 2, 37.1, 13.8, 13.9, 9.9, 2.8,
0, 4, 3, 0, 0.2, 2.8, 0.8, 0.6, 9.6, 0.4, 0, 0, 2.1, 2.5,
0, 1, 0.9, 6.4, 2.8, 1.7, 17.4, 18.2, 1.8, 9.9, 1.4, 0.9,
1.4, 1, 3.6, 2.5, 0.5, 3.6, 4.3, 9, 6.1, 1.4, 1.8, 4.7, 29.4,
5.7, 8.4, 0.5, 0.8, 2.8, 1.4, 1.6, 8.3, 1.6, 4.9, 3.4, 3.5,
1.2, 3.9, 6.3, 28.7, 26.9, 38.4, 4, 0, 2, 0.9, 0, 0, 1.9, 0.2
),
vit_b2=c(
33.3, 1.9, 8.8, 2.3, 7.9, 1.6, 4.8, 8.9, 8.5, 6.4, 3,
3, 0, 16, 23.5, 0.2, 0, 6.5, 10.3, 2.5, 8.1, 0.5, 0, 0.5,
2.9, 2.4, 2, 4, 0, 50.8, 3.9, 2.7, 2.7, 3.6, 1.8, 3.3, 1.8,
1.8, 2.4, 4.9, 2.7, 3.5, 0, 1.3, 5.8, 4.5, 4.3, 1.4, 3.4,
5.9, 7.1, 13.8, 5.4, 1, 0.8, 0.8, 2.1, 4.3, 7.7, 2.7, 2.5,
2.5, 2.4, 4.3, 4.3, 1.4, 18.4, 38.2, 24.6, 5.1, 2.3, 11.9,
3.4, 0, 0, 7.5, 0.4
),
vit_b3=c(
441, 68, 114, 68, 106, 110, 60, 64,
126, 160, 66, 17, 0, 7, 11, 2, 0, 1, 4, 0, 471, 0, 0, 5,
69, 87, 0, 120, 0, 316, 86, 54, 60, 79, 71, 50, 0, 68, 57,
209, 5, 28, 4, 10, 37, 26, 89, 9, 11, 21, 198, 33, 83, 31,
5, 7, 17, 32, 56, 42, 37, 36, 67, 55, 65, 24, 162, 93, 217,
50, 42, 40, 14, 0, 5, 146, 3
),
vit_c=c(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 177, 60, 0, 0, 0, 0,
17, 0, 0, 0, 0, 0, 0, 0,
0, 0, 525, 0, 0, 0, 0, 0, 0, 0, 46, 0, 0, 544, 498, 952,
1998, 862, 5369, 608, 313, 449, 1184, 2522, 2755, 1912, 196,
81, 399, 272, 431, 0, 218, 370, 1253, 862, 57, 257, 136,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
),
stringsAsFactors=FALSE
)
rownames(dat) <- dat[,"commodity"]
dat[,"commodity"] <- NULL
# formulate problem
lprec <- lpSolveAPI::make.lp(ncol=nrow(dat))
lpSolveAPI::lp.control(lprec, sense='min')
lpSolveAPI::set.objfn(lprec, rep(1, nrow(dat)))
for (req in names(requirements)) {
lpSolveAPI::add.constraint(lprec, dat[,req], ">=", requirements[req])
}
# solve
status <- lpSolveAPI::solve.lpExtPtr(lprec)
stopifnot(status==0)
message("cost per year ($): ", lpSolveAPI::get.objective(lprec)*365.25)
diet <- lpSolveAPI::get.variables(lprec)
names(diet) <- rownames(dat)
diet <- diet[diet>0]
我认为如果营养数据是每单位而不是每美元,问题会更有启发性。