OpenCV findHomography 和 WarpPerspective 没有产生好的结果

OpenCV findHomography and WarpPerspective not producing good results

我正在尝试使用 FindHomography 找到两个相机之间的扭曲矩阵,然后使用 warpPerspective 将图像拼接在一起。但是,待变形图像过度延伸并翻转到屏幕的另一侧。下面是一些简化的代码来显示奇怪的行为:

vector<Point2f> obj, scene, objCorners, TransformedObjCorners;

scene.push_back(Point2f(324,21));
scene.push_back(Point2f(388,4));
scene.push_back(Point2f(392,110));
scene.push_back(Point2f(322,111));
obj.push_back(Point2f(21,18));
obj.push_back(Point2f(79,45));
obj.push_back(Point2f(76,128));
obj.push_back(Point2f(13,118));
objCorners.push_back(Point2f(0,0));
objCorners.push_back(Point2f(400,0));
objCorners.push_back(Point2f(400,300));
objCorners.push_back(Point2f(0,300));

cv::Mat H = findHomography(obj, scene);

perspectiveTransform(objCorners, TransformedObjCorners, H);
cout << "Transformed object corners are :" << endl;
cout << TransformedObjCorners << endl;

我的输出是:

Transformed object corners are :
  [309.14066, 18.626106;
  -2.5252595, 298.53754;
   31.930698, 9.6980038;
   319.43829, 279.87805]

坐标为黑框:

你可以看到它因为负坐标在这里异常扭曲:

我已经花了几个小时试图跟踪问题。写方向上的任何 help/pointers 都会很有帮助。 谢谢

如何拼接左图? 如果我将三张图片拼接在一起,最好的方法是什么?所以我正在尝试左边和中间,下面是我的结果但是非常弱:

我使用了你的代码,调整了点的位置(因为你的图片有 title-bar)并扭曲了其中一张图片。

这些是具有点位置的输入图像:

这是代码

    int main()
{
    cv::Mat input1 = cv::imread("../inputData/panoA.png");
    cv::Mat input2 = cv::imread("../inputData/panoB.png");

    cv::Mat result;


    std::vector<cv::Point2f> obj, scene, objCorners, transformedObjCorners;

    std::vector<cv::Point2f> transObj, transScene;


    // had to adjust your coordinates since you provided images with title-bar
    scene.push_back(cv::Point2f(313,47));
    scene.push_back(cv::Point2f(379,21));
    scene.push_back(cv::Point2f(385,131));
    scene.push_back(cv::Point2f(317,136));
    obj.push_back(cv::Point2f(9,41));
    obj.push_back(cv::Point2f(70,61));
    obj.push_back(cv::Point2f(69,149));
    obj.push_back(cv::Point2f(7,145));
    objCorners.push_back(cv::Point2f(0,0));
    objCorners.push_back(cv::Point2f(input2.cols,0));
    objCorners.push_back(cv::Point2f(input2.cols,input2.rows));
    objCorners.push_back(cv::Point2f(0,input2.rows));

    cv::Mat H = findHomography(obj, scene);

    for(unsigned int i=0; i<scene.size(); ++i)
    {
        cv::circle(input1, scene[i], 5, cv::Scalar(0,255,0));
    }

    for(unsigned int i=0; i<obj.size(); ++i)
    {
        cv::circle(input2, obj[i], 5, cv::Scalar(0,255,0));
    }



    cv::Mat result1;
    cv::warpPerspective(input2, result1, H, cv::Size(input1.cols*2, input1.rows));

    cv::Mat result2 = cv::Mat(result1.size(), CV_8UC3, cv::Scalar(0,0,0));
    input1.copyTo(result2(cv::Rect(0,0,input1.cols, input1.rows)));

    result = result1.clone();

    // primitive blending, non-optimized
    for(int j=0; j<result1.rows; ++j)
        for(int i=0; i<result1.cols; ++i)
        {
            cv::Vec3b c1(0,0,0);
            cv::Vec3b c2(0,0,0);

            if(j < result1.rows && i<result1.cols) c1  = result1.at<cv::Vec3b>(j,i);
            if(j < result2.rows && i<result2.cols) c2  = result2.at<cv::Vec3b>(j,i);

            bool c1_0 = false;
            bool c2_0 = false;

            if(c1 == cv::Vec3b(0,0,0)) c1_0 = true;
            if(c2 == cv::Vec3b(0,0,0)) c2_0 = true;

            cv::Vec3b color(0,0,0);

            if(!c1_0 && !c2_0)
            {
                // both nonzero: use mean value:
                color = 0.5*(c1+c2);
            }
            if(c1_0)
            {
                // c1 zero => use c2
                color = c2;
            }
            if(c2_0)
            {
                // c1 zero => use c2
                color = c1;
            }

            result.at<cv::Vec3b>(j,i) = color;

        }


    cv::imshow("input1", input1);
    cv::imshow("input2", input2);
    cv::imshow("result", result);
    cv::imwrite("../outputData/panoResult1.png", input1);
    cv::imwrite("../outputData/panoResult2.png", input2);
    cv::imwrite("../outputData/panoResult.png", result);
    cv::waitKey(0);
    return 0;
}

这是原始混合的结果:

失真来自将 3D 世界映射到 2D 平面以及镜头失真。此外,您的相机运动可能不会在两个图像之间为您提供完美的单应性关系(仅适用于平面或围绕相机中心的纯相机旋转)