为什么 Numpy 和 Scipy QR 分解给我不同的值?
Why Numpy and Scipy QR decomposition give me different values?
我有以下向量。
x = np.array([[ 0.87695113],
[ 0.3284933 ],
[-0.35078323]])
当我调用 numpy 版本的 qr 时
from numpy.linalg import qr as qr_numpy
qr_numpy(x)
我得到
(array([[-0.87695113],
[-0.3284933 ],
[ 0.35078323]]), array([[-1.]]))
而当我 运行 scipy 版本时,我得到了完全不同的东西。
from scipy.linalg import qr as qr_scipy
qr_scipy(x)
有输出
(array([[-0.87695113, -0.3284933 , 0.35078323],
[-0.3284933 , 0.94250897, 0.06139208],
[ 0.35078323, 0.06139208, 0.93444215]]), array([[-1.],
[ 0.],
[ 0.]]))
这是怎么回事??
numpy.linalg.qr()
is 'reduced'
whereas for scipy.linalg.qr()
的默认 mode
是 'full'
。
因此,要获得相同的结果,请对 scipy-qr 使用 'economic'
或对 numpy-qr 使用 'complete'
:
from numpy.linalg import qr as qr_numpy
qr_numpy(x)
(array([[-0.87695113],
[-0.3284933 ],
[ 0.35078323]]),
array([[-1.]]))
与 scipy-qr:
的输出匹配
from scipy.linalg import qr as qr_scipy
qr_scipy(x, mode='economic')
(array([[-0.87695113],
[-0.3284933 ],
[ 0.35078323]]),
array([[-1.]]))
并获得包含两者的“完整”版本:
from numpy.linalg import qr as qr_numpy
qr_numpy(x, mode='complete')
(array([[-0.87695113, -0.3284933 , 0.35078323],
[-0.3284933 , 0.94250897, 0.06139208],
[ 0.35078323, 0.06139208, 0.93444215]]),
array([[-1.],
[ 0.],
[ 0.]]))
from scipy.linalg import qr as qr_scipy
qr_scipy(x)
(array([[-0.87695113, -0.3284933 , 0.35078323],
[-0.3284933 , 0.94250897, 0.06139208],
[ 0.35078323, 0.06139208, 0.93444215]]),
array([[-1.],
[ 0.],
[ 0.]]))
我有以下向量。
x = np.array([[ 0.87695113],
[ 0.3284933 ],
[-0.35078323]])
当我调用 numpy 版本的 qr 时
from numpy.linalg import qr as qr_numpy
qr_numpy(x)
我得到
(array([[-0.87695113],
[-0.3284933 ],
[ 0.35078323]]), array([[-1.]]))
而当我 运行 scipy 版本时,我得到了完全不同的东西。
from scipy.linalg import qr as qr_scipy
qr_scipy(x)
有输出
(array([[-0.87695113, -0.3284933 , 0.35078323],
[-0.3284933 , 0.94250897, 0.06139208],
[ 0.35078323, 0.06139208, 0.93444215]]), array([[-1.],
[ 0.],
[ 0.]]))
这是怎么回事??
numpy.linalg.qr()
is 'reduced'
whereas for scipy.linalg.qr()
的默认 mode
是 'full'
。
因此,要获得相同的结果,请对 scipy-qr 使用 'economic'
或对 numpy-qr 使用 'complete'
:
from numpy.linalg import qr as qr_numpy
qr_numpy(x)
(array([[-0.87695113],
[-0.3284933 ],
[ 0.35078323]]),
array([[-1.]]))
与 scipy-qr:
的输出匹配from scipy.linalg import qr as qr_scipy
qr_scipy(x, mode='economic')
(array([[-0.87695113],
[-0.3284933 ],
[ 0.35078323]]),
array([[-1.]]))
并获得包含两者的“完整”版本:
from numpy.linalg import qr as qr_numpy
qr_numpy(x, mode='complete')
(array([[-0.87695113, -0.3284933 , 0.35078323],
[-0.3284933 , 0.94250897, 0.06139208],
[ 0.35078323, 0.06139208, 0.93444215]]),
array([[-1.],
[ 0.],
[ 0.]]))
from scipy.linalg import qr as qr_scipy
qr_scipy(x)
(array([[-0.87695113, -0.3284933 , 0.35078323],
[-0.3284933 , 0.94250897, 0.06139208],
[ 0.35078323, 0.06139208, 0.93444215]]),
array([[-1.],
[ 0.],
[ 0.]]))