交叉熵 IndexError 维度超出范围
Cross entropy IndexError Dimension out of range
我正在尝试在一些图像中训练 GAN,我按照 pytorch 页面上的教程进行操作并获得了以下代码,但是在训练过程中应用交叉熵函数时,它 return 出现了错误代码下方:
import random
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as torch_dataset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
seed = 1
print("Random Seed: ", seed)
random.seed(seed)
torch.manual_seed(seed)
images_folder_path = "./images/"
batch_size = 128
image_size = 256
n_channels = 1
z_vector = 100
n_features_generator = 64
n_features_discriminator = 64
num_epochs = 5
lr = 0.0002
beta1 = 0.5
dataset = torch_dataset.ImageFolder(
root=images_folder_path, transform=transforms.Compose(
[
transforms.Grayscale(num_output_channels=1),
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(0.5, 0.5)
]
)
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0)
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(z_vector, n_features_generator * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(n_features_generator * 8),
nn.ReLU(True),
nn.ConvTranspose2d(n_features_generator * 8, n_features_generator * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_generator * 4),
nn.ReLU(True),
nn.ConvTranspose2d(n_features_generator * 4, n_features_generator * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_generator * 2),
nn.ReLU(True),
nn.ConvTranspose2d(n_features_generator * 2, n_features_generator, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_generator),
nn.ReLU(True),
nn.ConvTranspose2d(n_features_generator, n_channels, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, inputs):
return self.main(inputs)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(n_channels, n_features_discriminator, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(n_features_discriminator, n_features_discriminator * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_discriminator * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(n_features_discriminator * 2, n_features_discriminator * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_discriminator * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(n_features_discriminator * 4, n_features_discriminator * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_discriminator * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(n_features_discriminator * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, inputs):
return self.main(inputs)
netG = Generator().to(device)
if device.type == 'cuda':
netG = nn.DataParallel(netG)
netG.apply(weights_init)
print(netG)
netD = Discriminator().to(device)
if device.type == 'cuda':
netD = nn.DataParallel(netD)
netD.apply(weights_init)
print(netD)
criterion = nn.CrossEntropyLoss()
fixed_noise = torch.randn(64, z_vector, 1, 1, device=device)
real_label = 1.
fake_label = 0.
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
img_list = []
G_losses = []
D_losses = []
iters = 0
print("Starting Training Loop...")
for epoch in range(num_epochs):
for i, data in enumerate(dataloader, 0):
netD.zero_grad()
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
output = netD(real_cpu).view(-1)
# ----------------------------------------------------------------------------------
errD_real = criterion(output, label) # ERROR HAPPENS HERE
# ----------------------------------------------------------------------------------
errD_real.backward()
D_x = output.mean().item()
noise = torch.randn(b_size, z_vector, 1, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
netG.zero_grad()
label.fill_(real_label)
output = netD(fake).view(-1)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
if i % 50 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
G_losses.append(errG.item())
D_losses.append(errD.item())
if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
iters += 1
错误:
追溯(最近调用最后):
文件“G:/Pastas Estruturadas/Conhecimento/CEFET/IA/SpectroGAN/dcgan.py”,第 137 行,在
errD_real = 标准(输出,标签)
文件“C:\Users\Ramon\anaconda3\envs\vision\lib\site-packages\torch\nn\modules\module.py”,第 722 行,在 _call_impl
中
结果 = self.forward(*输入, **kwargs)
文件“C:\Users\Ramon\anaconda3\envs\vision\lib\site-packages\torch\nn\modules\loss.py”,第 948 行,向前
ignore_index=self.ignore_index,减少=self.reduction)
文件“C:\Users\Ramon\anaconda3\envs\vision\lib\site-packages\torch\nn\functional.py”,第 2422 行,在 cross_entropy
中
return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, 减少)
文件“C:\Users\Ramon\anaconda3\envs\vision\lib\site-packages\torch\nn\functional.py”,第 1591 行,在 log_softmax
中
ret = input.log_softmax(昏暗)
IndexError: 维度超出范围(预期在 [-1, 0] 范围内,但得到 1)
进程已完成,退出代码为 1
您的模型输出与您的标准不一致。
如果要保留模型并更改标准:
使用BCELoss
instead of CrossEntropyLoss
. Note: You will need to cast your labels to float before passing them in. Also consider removing the Sigmoid()
from the model and using BCEWithLogitsLoss
.
如果要保留标准并更改模型:
CrossEntropyLoss
期望形状 (..., num_classes)
。因此,对于您的 2 class 案例(真假),您必须为批处理中的每个图像预测 2 个值,这意味着您将需要更改模型中最后一层的输出通道。它还需要原始 logits,因此您应该删除 Sigmoid()
.
我正在尝试在一些图像中训练 GAN,我按照 pytorch 页面上的教程进行操作并获得了以下代码,但是在训练过程中应用交叉熵函数时,它 return 出现了错误代码下方:
import random
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.datasets as torch_dataset
import torchvision.transforms as transforms
import torchvision.utils as vutils
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from IPython.display import HTML
seed = 1
print("Random Seed: ", seed)
random.seed(seed)
torch.manual_seed(seed)
images_folder_path = "./images/"
batch_size = 128
image_size = 256
n_channels = 1
z_vector = 100
n_features_generator = 64
n_features_discriminator = 64
num_epochs = 5
lr = 0.0002
beta1 = 0.5
dataset = torch_dataset.ImageFolder(
root=images_folder_path, transform=transforms.Compose(
[
transforms.Grayscale(num_output_channels=1),
transforms.Resize(image_size),
transforms.CenterCrop(image_size),
transforms.ToTensor(),
transforms.Normalize(0.5, 0.5)
]
)
)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=0)
device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu")
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.main = nn.Sequential(
nn.ConvTranspose2d(z_vector, n_features_generator * 8, 4, 1, 0, bias=False),
nn.BatchNorm2d(n_features_generator * 8),
nn.ReLU(True),
nn.ConvTranspose2d(n_features_generator * 8, n_features_generator * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_generator * 4),
nn.ReLU(True),
nn.ConvTranspose2d(n_features_generator * 4, n_features_generator * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_generator * 2),
nn.ReLU(True),
nn.ConvTranspose2d(n_features_generator * 2, n_features_generator, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_generator),
nn.ReLU(True),
nn.ConvTranspose2d(n_features_generator, n_channels, 4, 2, 1, bias=False),
nn.Tanh()
)
def forward(self, inputs):
return self.main(inputs)
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.main = nn.Sequential(
nn.Conv2d(n_channels, n_features_discriminator, 4, 2, 1, bias=False),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(n_features_discriminator, n_features_discriminator * 2, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_discriminator * 2),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(n_features_discriminator * 2, n_features_discriminator * 4, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_discriminator * 4),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(n_features_discriminator * 4, n_features_discriminator * 8, 4, 2, 1, bias=False),
nn.BatchNorm2d(n_features_discriminator * 8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(n_features_discriminator * 8, 1, 4, 1, 0, bias=False),
nn.Sigmoid()
)
def forward(self, inputs):
return self.main(inputs)
netG = Generator().to(device)
if device.type == 'cuda':
netG = nn.DataParallel(netG)
netG.apply(weights_init)
print(netG)
netD = Discriminator().to(device)
if device.type == 'cuda':
netD = nn.DataParallel(netD)
netD.apply(weights_init)
print(netD)
criterion = nn.CrossEntropyLoss()
fixed_noise = torch.randn(64, z_vector, 1, 1, device=device)
real_label = 1.
fake_label = 0.
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))
img_list = []
G_losses = []
D_losses = []
iters = 0
print("Starting Training Loop...")
for epoch in range(num_epochs):
for i, data in enumerate(dataloader, 0):
netD.zero_grad()
real_cpu = data[0].to(device)
b_size = real_cpu.size(0)
label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
output = netD(real_cpu).view(-1)
# ----------------------------------------------------------------------------------
errD_real = criterion(output, label) # ERROR HAPPENS HERE
# ----------------------------------------------------------------------------------
errD_real.backward()
D_x = output.mean().item()
noise = torch.randn(b_size, z_vector, 1, 1, device=device)
fake = netG(noise)
label.fill_(fake_label)
output = netD(fake.detach()).view(-1)
errD_fake = criterion(output, label)
errD_fake.backward()
D_G_z1 = output.mean().item()
errD = errD_real + errD_fake
optimizerD.step()
netG.zero_grad()
label.fill_(real_label)
output = netD(fake).view(-1)
errG = criterion(output, label)
errG.backward()
D_G_z2 = output.mean().item()
optimizerG.step()
if i % 50 == 0:
print('[%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, num_epochs, i, len(dataloader),
errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
G_losses.append(errG.item())
D_losses.append(errD.item())
if (iters % 500 == 0) or ((epoch == num_epochs-1) and (i == len(dataloader)-1)):
with torch.no_grad():
fake = netG(fixed_noise).detach().cpu()
img_list.append(vutils.make_grid(fake, padding=2, normalize=True))
iters += 1
错误:
追溯(最近调用最后):
文件“G:/Pastas Estruturadas/Conhecimento/CEFET/IA/SpectroGAN/dcgan.py”,第 137 行,在 errD_real = 标准(输出,标签)
文件“C:\Users\Ramon\anaconda3\envs\vision\lib\site-packages\torch\nn\modules\module.py”,第 722 行,在 _call_impl
中结果 = self.forward(*输入, **kwargs)
文件“C:\Users\Ramon\anaconda3\envs\vision\lib\site-packages\torch\nn\modules\loss.py”,第 948 行,向前
ignore_index=self.ignore_index,减少=self.reduction)
文件“C:\Users\Ramon\anaconda3\envs\vision\lib\site-packages\torch\nn\functional.py”,第 2422 行,在 cross_entropy
中return nll_loss(log_softmax(input, 1), target, weight, None, ignore_index, None, 减少)
文件“C:\Users\Ramon\anaconda3\envs\vision\lib\site-packages\torch\nn\functional.py”,第 1591 行,在 log_softmax
中ret = input.log_softmax(昏暗)
IndexError: 维度超出范围(预期在 [-1, 0] 范围内,但得到 1)
进程已完成,退出代码为 1
您的模型输出与您的标准不一致。
如果要保留模型并更改标准:
使用BCELoss
instead of CrossEntropyLoss
. Note: You will need to cast your labels to float before passing them in. Also consider removing the Sigmoid()
from the model and using BCEWithLogitsLoss
.
如果要保留标准并更改模型:
CrossEntropyLoss
期望形状 (..., num_classes)
。因此,对于您的 2 class 案例(真假),您必须为批处理中的每个图像预测 2 个值,这意味着您将需要更改模型中最后一层的输出通道。它还需要原始 logits,因此您应该删除 Sigmoid()
.