Numpy/Pandas 关联多个不同长度的数组
Numpy/Pandas correlate multiple arrays of different length
我可以使用 关联两个不同长度的数组:
import pandas as pd
import numpy as np
from scipy.stats.stats import pearsonr
a = [0, 0.4, 0.2, 0.4, 0.2, 0.4, 0.2, 0.5]
b = [25, 40, 62, 58, 53, 54]
df = pd.DataFrame(dict(x=a))
CORR_VALS = np.array(b)
def get_correlation(vals):
return pearsonr(vals, CORR_VALS)[0]
df['correlation'] = df.rolling(window=len(CORR_VALS)).apply(get_correlation)
我得到这样的结果:
In [1]: df
Out[1]:
x correlation
0 0.0 NaN
1 0.4 NaN
2 0.2 NaN
3 0.4 NaN
4 0.2 NaN
5 0.4 0.527932
6 0.2 -0.159167
7 0.5 0.189482
首先,皮尔逊系数应该是这个数据集中的最高数字...
其次,我如何对多组数据执行此操作?我想要一个像 df.corr() 中那样的输出。使用适当标记的索引和列。
例如,假设我有以下数据集:
a = [0, 0.4, 0.2, 0.4, 0.2, 0.4, 0.2, 0.5]
b = [25, 40, 62, 58, 53, 54]
c = [ 0, 0.4, 0.2, 0.4, 0.2, 0.45, 0.2, 0.52, 0.52, 0.4, 0.21, 0.2, 0.4, 0.51]
d = [ 0.4, 0.2, 0.5]
我想要一个包含 16 个 Pearson 系数的相关矩阵...
import pandas as pd
import numpy as np
from scipy.stats.stats import pearsonr
a = [0, 0.4, 0.2, 0.4, 0.2, 0.4, 0.2, 0.5]
b = [25, 40, 62, 58, 53, 54]
c = [ 0, 0.4, 0.2, 0.4, 0.2, 0.45, 0.2, 0.52, 0.52, 0.4, 0.21, 0.2, 0.4, 0.51]
d = [ 0.4, 0.2, 0.5]
# To store the data
dict_series = {'a': a,'b': b,'c':c,'d':d}
list_series_names = [i for i in dict_series.keys()]
def get_max_correlation_from_lists(a, b):
# This is to make sure the longest list is in the dataframe
if len(b)>=len(a):
a_old = a
a = b
b= a_old
# Taking the body from the original code.
df = pd.DataFrame(dict(x=a))
CORR_VALS = np.array(b)
def get_correlation(vals):
return pearsonr(vals, CORR_VALS)[0]
# Collecting the max
return df.rolling(window=len(CORR_VALS)).apply(get_correlation).max().values[0]
# This is to create the "correlations" matrix
correlations_matrix = pd.DataFrame(index=list_series_names,columns=list_series_names )
for i in list_series_names:
for j in list_series_names:
correlations_matrix.loc[i,j]=get_max_correlation_from_lists(dict_series[i], dict_series[j])
print(correlations_matrix)
a b c d
a 1.0 0.527932 0.995791 1.0
b 0.527932 1.0 0.52229 0.427992
c 0.995791 0.52229 1.0 0.992336
d 1.0 0.427992 0.992336 1.0
我可以使用
import pandas as pd
import numpy as np
from scipy.stats.stats import pearsonr
a = [0, 0.4, 0.2, 0.4, 0.2, 0.4, 0.2, 0.5]
b = [25, 40, 62, 58, 53, 54]
df = pd.DataFrame(dict(x=a))
CORR_VALS = np.array(b)
def get_correlation(vals):
return pearsonr(vals, CORR_VALS)[0]
df['correlation'] = df.rolling(window=len(CORR_VALS)).apply(get_correlation)
我得到这样的结果:
In [1]: df
Out[1]:
x correlation
0 0.0 NaN
1 0.4 NaN
2 0.2 NaN
3 0.4 NaN
4 0.2 NaN
5 0.4 0.527932
6 0.2 -0.159167
7 0.5 0.189482
首先,皮尔逊系数应该是这个数据集中的最高数字...
其次,我如何对多组数据执行此操作?我想要一个像 df.corr() 中那样的输出。使用适当标记的索引和列。
例如,假设我有以下数据集:
a = [0, 0.4, 0.2, 0.4, 0.2, 0.4, 0.2, 0.5]
b = [25, 40, 62, 58, 53, 54]
c = [ 0, 0.4, 0.2, 0.4, 0.2, 0.45, 0.2, 0.52, 0.52, 0.4, 0.21, 0.2, 0.4, 0.51]
d = [ 0.4, 0.2, 0.5]
我想要一个包含 16 个 Pearson 系数的相关矩阵...
import pandas as pd
import numpy as np
from scipy.stats.stats import pearsonr
a = [0, 0.4, 0.2, 0.4, 0.2, 0.4, 0.2, 0.5]
b = [25, 40, 62, 58, 53, 54]
c = [ 0, 0.4, 0.2, 0.4, 0.2, 0.45, 0.2, 0.52, 0.52, 0.4, 0.21, 0.2, 0.4, 0.51]
d = [ 0.4, 0.2, 0.5]
# To store the data
dict_series = {'a': a,'b': b,'c':c,'d':d}
list_series_names = [i for i in dict_series.keys()]
def get_max_correlation_from_lists(a, b):
# This is to make sure the longest list is in the dataframe
if len(b)>=len(a):
a_old = a
a = b
b= a_old
# Taking the body from the original code.
df = pd.DataFrame(dict(x=a))
CORR_VALS = np.array(b)
def get_correlation(vals):
return pearsonr(vals, CORR_VALS)[0]
# Collecting the max
return df.rolling(window=len(CORR_VALS)).apply(get_correlation).max().values[0]
# This is to create the "correlations" matrix
correlations_matrix = pd.DataFrame(index=list_series_names,columns=list_series_names )
for i in list_series_names:
for j in list_series_names:
correlations_matrix.loc[i,j]=get_max_correlation_from_lists(dict_series[i], dict_series[j])
print(correlations_matrix)
a b c d
a 1.0 0.527932 0.995791 1.0
b 0.527932 1.0 0.52229 0.427992
c 0.995791 0.52229 1.0 0.992336
d 1.0 0.427992 0.992336 1.0