BERT 编码器层是不可训练的
BERT Encoder layer is non-trainable
我正在尝试从 TensorFlow hub 微调 BERT 模型。我按如下方式加载了预处理层和编码器:
bert_preprocess_model = hub.KerasLayer('https://tfhub.dev/tensorflow/bert_multi_cased_preprocess/3')
bert_model = hub.KerasLayer('https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1')
这是我的模型定义:
def build_classifier_model():
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
preprocessing_layer = hub.KerasLayer(bert_preprocess_model, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(bert_model, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.1)(net)
net = tf.keras.layers.Dense(3, activation='softmax', name='classifier')(net)
return tf.keras.Model(text_input, net)
classifier_model = build_classifier_model()
但我收到以下错误:ERROR:absl:hub。KerasLayer 是可训练的,但可训练权重为零。
在官网,模型是fine-tunable的
我找到了解决方案,只需添加 trainable = True :
bert_model = hub.KerasLayer('https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1',trainable=True)
我正在尝试从 TensorFlow hub 微调 BERT 模型。我按如下方式加载了预处理层和编码器:
bert_preprocess_model = hub.KerasLayer('https://tfhub.dev/tensorflow/bert_multi_cased_preprocess/3')
bert_model = hub.KerasLayer('https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1')
这是我的模型定义:
def build_classifier_model():
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
preprocessing_layer = hub.KerasLayer(bert_preprocess_model, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(bert_model, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.1)(net)
net = tf.keras.layers.Dense(3, activation='softmax', name='classifier')(net)
return tf.keras.Model(text_input, net)
classifier_model = build_classifier_model()
但我收到以下错误:ERROR:absl:hub。KerasLayer 是可训练的,但可训练权重为零。 在官网,模型是fine-tunable的
我找到了解决方案,只需添加 trainable = True :
bert_model = hub.KerasLayer('https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-4_H-512_A-8/1',trainable=True)