R:在没有for循环的情况下聚合日期

R: Aggregating between dates without for loop

我希望在不使用 for 循环的情况下对两个日期之间活跃的租赁所赚取的所有租金求和。

这是租赁数据的示例
DataFrame1

StartDate     EndDate       MonthlyRental  
2015-07-01    2015-09-30    500
2015-06-01    2015-10-31    600
2015-07-15    2016-01-31    400
2015-08-01    2015-12-31    800

我想计算每个月我能得到的租金数额,如果可能的话按比例计算(如果太难则不NB)。例如:
DataFrame2

Month        RentalIncome
2015-07-31   500+600+(400*15/31)
2015-08-31   500+600+400+800
2015-09-30   500+600+400+800
2015-10-31   600+400+800
2015-11-30   600+400+800
etc.

有谁知道比简单地循环 Dataframe2 更好的方法吗?

谢谢,

麦克

我不确定这是否比 "simply looping through the dataframe" 更好 - 因为我实际上 do 循环它 - 但这是产生所需输出的方法。

(输出与2015年7月的问题有偏差,因为7月要支付17天的租金,而不是15天。)

将给定的时间间隔转换为天数,计算出每天的租金,然后按月汇总每天的租金:

library(zoo)

df1 <- data.frame(
  StartDate = as.Date(c("2015-07-01", "2015-06-01", "2015-07-15", "2015-08-01")),
  EndDate = as.Date(c("2015-09-30", "2015-10-31", "2016-01-31", "2015-12-31")),
  MonthlyRental = c(500, 600, 400, 800)
)

df1LongList <- apply(df1, MARGIN = 1, FUN = function(row) {
  return(data.frame(
    date = seq(from = as.Date(row["StartDate"]), to = as.Date(row["EndDate"]), by = "day"),
    MonthlyRental = as.numeric(row["MonthlyRental"])))
})

df1Long <- do.call("rbind", df1LongList)
df1Long$yearMon <- as.yearmon(df1Long$date)
df1Long$maxDays <- as.numeric(as.Date(df1Long$yearMon, frac = 1) - as.Date(df1Long$yearMon) + 1) # Thanks: 

df1Long$rental <- df1Long$MonthlyRental / df1Long$maxDays

tapply(X = df1Long$rental, INDEX = df1Long$yearMon, FUN = sum)

# Jun 2015 Jul 2015 Aug 2015 Sep 2015 Okt 2015 Nov 2015 Dez 2015 Jan 2016 
# 600.000 1319.355 2300.000 2300.000 1800.000 1200.000 1200.000  400.000 

这是一个可能的 data.table 解决方案(在 Hmisc 包的帮助下)。如果没有半个月的租金,这可能是一个非常简单的问题,但由于这种限制,它变得很困难。

附带说明一下,根据您的示例,我只假设 StartDate 半个月

library(data.table)
require(Hmisc)

# Converting to valid date classes
Dates <- names(df)[1:2]
setDT(df)[, (Dates) := lapply(.SD, as.Date), .SDcols = Dates]

# Handling half months
df[mday(StartDate) != 1, `:=`(GRP = seq_len(.N), 
                              mDays = mday(StartDate), 
                              StartDate = StartDate - mday(StartDate) + 1L)]

## Converting to long format
res <- df[, .(Month = seq(StartDate, EndDate, by = "month")), 
              by = .(MonthlyRental, GRP, mDays)]

## Dividing not full months by the number of days (that could be modified as per other post)
res[match(na.omit(df$GRP), GRP), MonthlyRental := MonthlyRental*mDays/monthDays(Month)]
res[, .(RentalIncome = sum(MonthlyRental)), keyby = .(year(Month), month(Month))]

#    year month RentalIncome
# 1: 2015     6          600
# 2: 2015     7         1293
# 3: 2015     8         2300
# 4: 2015     9         2300
# 5: 2015    10         1800
# 6: 2015    11         1200
# 7: 2015    12         1200
# 8: 2016     1          400

我使用外积,'pmin',和'pmax'来避免循环。部分涵盖的月份既困难又有趣:

library(lubridate)

df1 <- data.frame(
  StartDate = as.Date(c("2015-07-01", "2015-06-01", "2015-07-15", "2015-08-01")),
  EndDate = as.Date(c("2015-09-30", "2015-10-31", "2016-01-31", "2015-12-31")),
  MonthlyRental = c(500, 600, 400, 800)
)

d <- c( as.Date("2015-07-31"),
        as.Date("2015-08-31"),
        as.Date("2015-09-30"),
        as.Date("2015-10-31"),
        as.Date("2015-11-30"),
        as.Date("2015-12-31"),
        as.Date("2016-01-31"),
        as.Date("2016-02-29")  )

RentPerDay <- outer( df1$"MonthlyRental", days_in_month(d), "/" )

countDays <- pmin( pmax( outer( d, df1$"StartDate", "-") + 1, 0 ), days_in_month(d) ) -
             pmin( pmax( outer( d, df1$"EndDate"  , "-"), 0 ), days_in_month(d) )

rentalIncome <- colSums( t(countDays) * RentPerDay )

矩阵 't(countDays)' 的列对应于 'DataFrame_2' 的行,即月份。这些行对应于 'DataFrame_1' 的行,即租金收入的来源。 (i,j) 处的条目是第 j 个月中第 i 个来源贡献租金收入的天数。矩阵 'RentPerDay' 具有相同的结构。 (i,j) 处的条目是第 j 个月中一天从第 i 个来源获得的金额。然后将这两个矩阵的元素乘积在第j列上求和就是第j个月的总租金收入。

> t(countDays)
Time differences in days
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,]   31   31   30    0    0    0    0    0
[2,]   31   31   30   31    0    0    0    0
[3,]   17   31   30   31   30   31   31    0
[4,]    0   31   30   31   30   31    0    0
> RentPerDay
          Jul      Aug      Sep      Oct      Nov      Dec      Jan      Feb
[1,] 16.12903 16.12903 16.66667 16.12903 16.66667 16.12903 16.12903 17.24138
[2,] 19.35484 19.35484 20.00000 19.35484 20.00000 19.35484 19.35484 20.68966
[3,] 12.90323 12.90323 13.33333 12.90323 13.33333 12.90323 12.90323 13.79310
[4,] 25.80645 25.80645 26.66667 25.80645 26.66667 25.80645 25.80645 27.58621
> rentalIncome
     Jul      Aug      Sep      Oct      Nov      Dec      Jan      Feb 
1319.355 2300.000 2300.000 1800.000 1200.000 1200.000  400.000    0.000 
> 

我稍微修改了之前的回答。矩阵 "RentPerDay" 不是必需的。 "colSums(t(countDays)*RentPerDay)" 可以用矩阵向量积代替。此解决方案计算的租金​​收入与之前的解决方案相同。

library(lubridate)

ultimo_day <- function( start, end )
{
  N <- 12*(year(end) - year(start)) + month(end) - month(start) + 1
  d <- start
  day(d) <- 1
  month(d) <- month(d) + (1:N)
  return( d - as.difftime(1,units="days"))
}

countDays <- function( data, d )
{
  return( pmin( pmax( outer( d, data$"StartDate", "-") + 1, 0 ), day(d) ) -
          pmin( pmax( outer( d, data$"EndDate"  , "-"), 0 ), day(d) ) )
}

rentalIncome <- function( data,
                          d = ultimo_day( min(data$StartDate), max(data$EndDate) ) )
{
  return ( data.frame( date   = d,
                       income = ( countDays(data,d) / days_in_month(d) ) %*% data$"MonthlyRental" ) )
}

# -------- Example Data: --------

df1 <- data.frame(
  StartDate     = as.Date(c("2015-07-01", "2015-06-01", "2015-07-15", "2015-08-01", "2014-06-20")),
  EndDate       = as.Date(c("2015-09-30", "2015-10-31", "2016-01-31", "2015-12-31", "2015-07-31")),
  MonthlyRental = c(500, 600, 400, 800, 300)
)

示例中我又添加了一个租约,有效期超过一年:

> df1
   StartDate    EndDate MonthlyRental
1 2015-07-01 2015-09-30           500
2 2015-06-01 2015-10-31           600
3 2015-07-15 2016-01-31           400
4 2015-08-01 2015-12-31           800
5 2014-06-20 2015-07-31           300    

"ultimo_day(start,end)" 是 "start" 和 "end" 之间支付租金的天数向量:

> d <- ultimo_day( min(df1$StartDate), max(df1$EndDate))
> d
 [1] "2014-06-30" "2014-07-31" "2014-08-31" "2014-09-30" "2014-10-31" "2014-11-30" "2014-12-31" "2015-01-31" "2015-02-28" "2015-03-31" "2015-04-30"
[12] "2015-05-31" "2015-06-30" "2015-07-31" "2015-08-31" "2015-09-30" "2015-10-31" "2015-11-30" "2015-12-31" "2016-01-31"

矩阵的行 "countDays" 对应于最后几天,因此对应于月份:

> countDays(df1,d)
Time differences in days
      [,1] [,2] [,3] [,4] [,5]
 [1,]    0    0    0    0   11
 [2,]    0    0    0    0   31
 [3,]    0    0    0    0   31
 [4,]    0    0    0    0   30
 [5,]    0    0    0    0   31
 [6,]    0    0    0    0   30
 [7,]    0    0    0    0   31
 [8,]    0    0    0    0   31
 [9,]    0    0    0    0   28
[10,]    0    0    0    0   31
[11,]    0    0    0    0   30
[12,]    0    0    0    0   31
[13,]    0   30    0    0   30
[14,]   31   31   17    0   31
[15,]   31   31   31   31    0
[16,]   30   30   30   30    0
[17,]    0   31   31   31    0
[18,]    0    0   30   30    0
[19,]    0    0   31   31    0
[20,]    0    0   31    0    0

第 1 行属于 2014 年 6 月,第 2 行属于 2014 年 7 月,...,第 20 行属于 2016 年 1 月。

"countDays(df1,d) / days_in_month(d)" 又是一个矩阵。 该矩阵的 (i,j) 分量不是天数 第 j 个租约在第 i 个月处于活动状态,但是这个数字的分数是 第 i 个月的长度:

> countDays(df1,d) / days_in_month(d)
Time differences in days
      [,1] [,2]      [,3] [,4]      [,5]
 [1,]    0    0 0.0000000    0 0.3666667
 [2,]    0    0 0.0000000    0 1.0000000
 [3,]    0    0 0.0000000    0 1.0000000
 [4,]    0    0 0.0000000    0 1.0000000
 [5,]    0    0 0.0000000    0 1.0000000
 [6,]    0    0 0.0000000    0 1.0000000
 [7,]    0    0 0.0000000    0 1.0000000
 [8,]    0    0 0.0000000    0 1.0000000
 [9,]    0    0 0.0000000    0 1.0000000
[10,]    0    0 0.0000000    0 1.0000000
[11,]    0    0 0.0000000    0 1.0000000
[12,]    0    0 0.0000000    0 1.0000000
[13,]    0    1 0.0000000    0 1.0000000
[14,]    1    1 0.5483871    0 1.0000000
[15,]    1    1 1.0000000    1 0.0000000
[16,]    1    1 1.0000000    1 0.0000000
[17,]    0    1 1.0000000    1 0.0000000
[18,]    0    0 1.0000000    1 0.0000000
[19,]    0    0 1.0000000    1 0.0000000
[20,]    0    0 1.0000000    0 0.0000000

这个矩阵乘以向量"df1$MonthlyRental",得到的向量作为"income"存储在租金收入的data.frame中:

> rentalIncome(df1)
         date   income
1  2014-06-30  110.000
2  2014-07-31  300.000
3  2014-08-31  300.000
4  2014-09-30  300.000
5  2014-10-31  300.000
6  2014-11-30  300.000
7  2014-12-31  300.000
8  2015-01-31  300.000
9  2015-02-28  300.000
10 2015-03-31  300.000
11 2015-04-30  300.000
12 2015-05-31  300.000
13 2015-06-30  900.000
14 2015-07-31 1619.355
15 2015-08-31 2300.000
16 2015-09-30 2300.000
17 2015-10-31 1800.000
18 2015-11-30 1200.000
19 2015-12-31 1200.000
20 2016-01-31  400.000