模糊匹配 returns NaN for best_match_score
Fuzzymatcher returns NaN for best_match_score
我在从 fuzzymatcher
库执行 fuzzy_left_join
时观察到奇怪的行为。尝试连接两个 df,左边一个有 5217 条记录,右边一个有 8734 条记录,所有带 best_match_score
的记录是 71 条记录,这看起来很奇怪。为了获得更好的结果,我什至删除了所有数字,只留下用于连接列的字母字符。在合并的table中,从右边table开始的id列是NaN
,这也是奇怪的结果。
left table - 连接“amazon_s3_name”的列。第一项 - limonig
+------+---------+-------+-----------+------------------------------------+
| id | product | price | category | amazon_s3_name |
+------+---------+-------+-----------+------------------------------------+
| 1 | A | 1.49 | fruits | limonig |
| 8964 | B | 1.39 | beverages | studencajfuzelimonilimonetatrevaml |
| 9659 | C | 2.79 | beverages | studencajfuzelimonilimtreval |
+------+---------+-------+-----------+------------------------------------+
右 table - 连接“amazon_s3_name”的列 - 最后一项 - limoni
+------+----------------------------------------------------------------------------------------------------------------------------+--------------------------------------------+
| id | picture | amazon_s3_name |
+------+----------------------------------------------------------------------------------------------------------------------------+--------------------------------------------+
| 191 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/AhmadCajLimonIDjindjifil20X2G.jpg | ahmadcajlimonidjindjifilxg |
| 192 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/AhmadCajLimonIDjindjifil20X2G40g.jpg | ahmadcajlimonidjindjifilxgg |
| 204 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Ahmadcajlimonidjindjifil20x2g40g00051265.jpg | ahmadcajlimonidjindjifilxgg |
| 1608 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Cajstudenfuzetealimonilimonovatreva15lpet.jpg | cajstudenfuzetealimonilimonovatrevalpet |
| 4689 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Lesieursalatensosslimonimaslinovomaslo.jpg | lesieursalatensosslimonimaslinovomaslo |
| 4690 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Lesieursalatensosslimonimaslinovomaslo05l500ml01301150.jpg | lesieursalatensosslimonimaslinovomaslolml |
| 4723 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Limoni.jpg | limoni |
+------+----------------------------------------------------------------------------------------------------------------------------+--------------------------------------------+
merged table - 正如我们在合并后看到的 table best_match_score
是 NaN
+----+------------------+-----------+------------+-------+----------+----------------------+------------+---------------------+-------------+----------------------+
| id | best_match_score | __id_left | __id_right | price | category | amazon_s3_name_left | image_left | amazon_s3_name_left | image_right | amazon_s3_name_right |
+----+------------------+-----------+------------+-------+----------+----------------------+------------+---------------------+-------------+----------------------+
| 0 | NaN | 0_left | None | 1.49 | Fruits | Limoni500g09700112 | NaN | limonig | NaN | NaN |
| 2 | NaN | 2_left | None | 1.69 | Bio | Morkovi1kgbr09700132 | NaN | morkovikgbr | NaN | NaN |
+----+------------------+-----------+------------+-------+----------+----------------------+------------+---------------------+-------------+----------------------+
你可以 polyfuzz
试一试。使用示例设置,例如使用 TF-IDF
或 Bert
,然后 运行:
model = PolyFuzz(matchers).match(df1["amazon_s3_name"].tolist(), df2["amazon_s3_name"].to_list())
df1['To'] = model.get_matches()['To']
然后合并:
df1.merge(df2, left_on='To', right_on='amazon_s3_name')
我在从 fuzzymatcher
库执行 fuzzy_left_join
时观察到奇怪的行为。尝试连接两个 df,左边一个有 5217 条记录,右边一个有 8734 条记录,所有带 best_match_score
的记录是 71 条记录,这看起来很奇怪。为了获得更好的结果,我什至删除了所有数字,只留下用于连接列的字母字符。在合并的table中,从右边table开始的id列是NaN
,这也是奇怪的结果。
left table - 连接“amazon_s3_name”的列。第一项 - limonig
+------+---------+-------+-----------+------------------------------------+
| id | product | price | category | amazon_s3_name |
+------+---------+-------+-----------+------------------------------------+
| 1 | A | 1.49 | fruits | limonig |
| 8964 | B | 1.39 | beverages | studencajfuzelimonilimonetatrevaml |
| 9659 | C | 2.79 | beverages | studencajfuzelimonilimtreval |
+------+---------+-------+-----------+------------------------------------+
右 table - 连接“amazon_s3_name”的列 - 最后一项 - limoni
+------+----------------------------------------------------------------------------------------------------------------------------+--------------------------------------------+
| id | picture | amazon_s3_name |
+------+----------------------------------------------------------------------------------------------------------------------------+--------------------------------------------+
| 191 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/AhmadCajLimonIDjindjifil20X2G.jpg | ahmadcajlimonidjindjifilxg |
| 192 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/AhmadCajLimonIDjindjifil20X2G40g.jpg | ahmadcajlimonidjindjifilxgg |
| 204 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Ahmadcajlimonidjindjifil20x2g40g00051265.jpg | ahmadcajlimonidjindjifilxgg |
| 1608 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Cajstudenfuzetealimonilimonovatreva15lpet.jpg | cajstudenfuzetealimonilimonovatrevalpet |
| 4689 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Lesieursalatensosslimonimaslinovomaslo.jpg | lesieursalatensosslimonimaslinovomaslo |
| 4690 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Lesieursalatensosslimonimaslinovomaslo05l500ml01301150.jpg | lesieursalatensosslimonimaslinovomaslolml |
| 4723 | https://s3.eu-central-1.amazonaws.com/groceries.pictures/images/Limoni.jpg | limoni |
+------+----------------------------------------------------------------------------------------------------------------------------+--------------------------------------------+
merged table - 正如我们在合并后看到的 table best_match_score
是 NaN
+----+------------------+-----------+------------+-------+----------+----------------------+------------+---------------------+-------------+----------------------+
| id | best_match_score | __id_left | __id_right | price | category | amazon_s3_name_left | image_left | amazon_s3_name_left | image_right | amazon_s3_name_right |
+----+------------------+-----------+------------+-------+----------+----------------------+------------+---------------------+-------------+----------------------+
| 0 | NaN | 0_left | None | 1.49 | Fruits | Limoni500g09700112 | NaN | limonig | NaN | NaN |
| 2 | NaN | 2_left | None | 1.69 | Bio | Morkovi1kgbr09700132 | NaN | morkovikgbr | NaN | NaN |
+----+------------------+-----------+------------+-------+----------+----------------------+------------+---------------------+-------------+----------------------+
你可以 polyfuzz
试一试。使用示例设置,例如使用 TF-IDF
或 Bert
,然后 运行:
model = PolyFuzz(matchers).match(df1["amazon_s3_name"].tolist(), df2["amazon_s3_name"].to_list())
df1['To'] = model.get_matches()['To']
然后合并:
df1.merge(df2, left_on='To', right_on='amazon_s3_name')