如何在 mlr3 中重复 glmnet 的超参数调整(alpha and/or lambda)

how to repeat hyperparameter tuning (alpha and/or lambda) of glmnet in mlr3

我想重复 mlr3 中的 glmnet 到更小的 的超参数调整(alpha and/or lambda)数据集

caret 中,我可以用 "repeatedcv"

做到这一点

因为我非常喜欢 mlr3 系列软件包,所以我想将它们用于我的分析。但是,我不确定如何在 mlr3

中执行此步骤的正确方法

示例数据

#library
library(caret)
library(mlr3verse)
library(mlbench)

# get example data
data(PimaIndiansDiabetes, package="mlbench")
data <- PimaIndiansDiabetes

# get small training data
train.data <- data[1:60,]

reprex package (v1.0.0)

于 2021-03-18 创建

caret 方法(调整 alphalambda)使用 "cv""repeatedcv"


trControlCv <- trainControl("cv",
             number = 5,
             classProbs = TRUE,
             savePredictions = TRUE,
             summaryFunction = twoClassSummary)

# use "repeatedcv" to avoid variability in smaller data sets
trControlRCv <- trainControl("repeatedcv",
             number = 5,
             repeats= 20,
             classProbs = TRUE,
             savePredictions = TRUE,
             summaryFunction = twoClassSummary)

# train and extract coefficients with "cv" and different set.seed
set.seed(2323)
model <- train(
  diabetes ~., data = train.data, method = "glmnet",
  trControl = trControlCv,
  tuneLength = 10,
  metric="ROC"
)

coef(model$finalModel, model$finalModel$lambdaOpt) -> coef1

set.seed(23)
model <- train(
  diabetes ~., data = train.data, method = "glmnet",
  trControl = trControlCv,
  tuneLength = 10,
  metric="ROC"
)

coef(model$finalModel, model$finalModel$lambdaOpt) -> coef2


# train and extract coefficients with "repeatedcv" and different set.seed
set.seed(13)

model <- train(
  diabetes ~., data = train.data, method = "glmnet",
  trControl = trControlRCv,
  tuneLength = 10,
  metric="ROC"
)

coef(model$finalModel, model$finalModel$lambdaOpt) -> coef3


set.seed(55)
model <- train(
  diabetes ~., data = train.data, method = "glmnet",
  trControl = trControlRCv,
  tuneLength = 10,
  metric="ROC"
)

coef(model$finalModel, model$finalModel$lambdaOpt) -> coef4

reprex package (v1.0.0)

于 2021-03-18 创建

通过交叉验证证明不同的系数,通过重复交叉验证证明相同的系数

# with "cv" I get different coefficients
identical(coef1, coef2)
#> [1] FALSE

# with "repeatedcv" I get the same coefficients
identical(coef3,coef4)
#> [1] TRUE

reprex package (v1.0.0)

于 2021-03-18 创建

第一个 mlr3 使用 cv.glmnet 的方法(内部调整 lambda

# create elastic net regression
glmnet_lrn = lrn("classif.cv_glmnet", predict_type = "prob")

# define train task
train.task <- TaskClassif$new("train.data", train.data, target = "diabetes")

# create learner 
learner = as_learner(glmnet_lrn)

# train the learner with different set.seed
set.seed(2323)
learner$train(train.task)
coef(learner$model, s = "lambda.min") -> coef1

set.seed(23)
learner$train(train.task)
coef(learner$model, s = "lambda.min") -> coef2

reprex package (v1.0.0)

于 2021-03-18 创建

通过交叉验证展示不同的系数

# compare coefficients
coef1
#> 9 x 1 sparse Matrix of class "dgCMatrix"
#>                        1
#> (Intercept) -3.323460895
#> age          0.005065928
#> glucose      0.019727881
#> insulin      .          
#> mass         .          
#> pedigree     .          
#> pregnant     0.001290570
#> pressure     .          
#> triceps      0.020529162
coef2
#> 9 x 1 sparse Matrix of class "dgCMatrix"
#>                        1
#> (Intercept) -3.146190752
#> age          0.003840963
#> glucose      0.019015433
#> insulin      .          
#> mass         .          
#> pedigree     .          
#> pregnant     .          
#> pressure     .          
#> triceps      0.018841557

reprex package (v1.0.0)

于 2021-03-18 创建

更新一:我的进步

根据下面的评论和 我可以使用 rsmpAutoTuner

这个answer建议不要调cv.glmnet而是glmnet(当时ml3没有)

第二种mlr3方法使用glmnet(重复alphalambda的调整)

# define train task
train.task <- TaskClassif$new("train.data", train.data, target = "diabetes")

# create elastic net regression
glmnet_lrn = lrn("classif.glmnet", predict_type = "prob")

# turn to learner
learner = as_learner(glmnet_lrn)

# make search space
search_space = ps(
  alpha = p_dbl(lower = 0, upper = 1),
  s = p_dbl(lower = 1, upper = 1)
)

# set terminator
terminator = trm("evals", n_evals = 20)

#set tuner
tuner = tnr("grid_search", resolution = 3)

# tune the learner
at = AutoTuner$new(
  learner = learner,
  rsmp("repeated_cv"),
  measure = msr("classif.ce"),
  search_space = search_space,
  terminator = terminator,
  tuner=tuner)

at
#> <AutoTuner:classif.glmnet.tuned>
#> * Model: -
#> * Parameters: list()
#> * Packages: glmnet
#> * Predict Type: prob
#> * Feature types: logical, integer, numeric
#> * Properties: multiclass, twoclass, weights

未决问题

我如何证明我的第二种方法是有效的并且我用不同的种子得到相同或相似的系数? IE。如何提取 AutoTuner

最终模型的系数
set.seed(23)
at$train(train.task) -> tune1

set.seed(2323) 
at$train(train.task) -> tune2

reprex package (v1.0.0)

于 2021-03-18 创建

glmnet 的重复超参数调整(alpha 和 lambda)可以使用 第二种 mlr3 方法 来完成,如上所述。 可以使用 stats::coefAutoTuner

中的存储值来提取系数
coef(tune1$model$learner$model, alpha=tune1$tuning_result$alpha,s=tune1$tuning_result$s)
# 9 x 1 sparse Matrix of class "dgCMatrix"
# 1
# (Intercept) -1.6359082102
# age          0.0075541841
# glucose      0.0044351365
# insulin      0.0005821515
# mass         0.0077104934
# pedigree     0.0911233031
# pregnant     0.0164721202
# pressure     0.0007055435
# triceps      0.0056942014
coef(tune2$model$learner$model, alpha=tune2$tuning_result$alpha,s=tune2$tuning_result$s)
# 9 x 1 sparse Matrix of class "dgCMatrix"
# 1
# (Intercept) -1.6359082102
# age          0.0075541841
# glucose      0.0044351365
# insulin      0.0005821515
# mass         0.0077104934
# pedigree     0.0911233031
# pregnant     0.0164721202
# pressure     0.0007055435
# triceps      0.0056942014