mrl3 集成模型中的重复 cv

Repeated cv in a mrl3 ensemble model

我有一个漂亮的 mlr3 集成模型(结合 glmnetglm)用于二元预测,查看详情

library("mlr3verse")
library("dplyr")

# get example data
data(PimaIndiansDiabetes, package="mlbench")
data <- PimaIndiansDiabetes

# add an additional predictor "superdoc" which is not entered in the glmnet but in the final glm
set.seed(2323)
data %>% 
  rowwise() %>% 
  mutate(superdoc=case_when(diabetes=="pos" ~ as.numeric(sample(0:2,1)), TRUE~ 0)) %>% 
  ungroup -> data

# make a rather small train set
set.seed(23)
test.data <- sample_n(data,70,replace=FALSE)

# creat elastic net regression
glmnet_lrn = lrn("classif.cv_glmnet", predict_type = "prob")

# create the learner out-of-bag predictions
glmnet_cv1 = po("learner_cv", glmnet_lrn, id = "glmnet")

# PipeOp that drops 'superdoc', i.e. selects all except 'superdoc'
# (ID given to avoid ID clash with other selector)
drop_superdoc = po("select", id = "drop.superdoc",
                   selector = selector_invert(selector_name("superdoc")))

# PipeOp that selects 'superdoc' (and drops all other columns)
select_superdoc = po("select", id = "select.superdoc",
                     selector = selector_name("superdoc"))

# superdoc along one path, the fitted model along the other
stacking_layer = gunion(list(
  select_superdoc,
  drop_superdoc %>>% glmnet_cv1
)) %>>% po("featureunion", id = "union1")

# final logistic regression
log_reg_lrn = lrn("classif.log_reg", predict_type = "prob")

# combine ensemble model
ensemble = stacking_layer %>>% log_reg_lrn


#define tests
train.task <- TaskClassif$new("test.data", test.data, target = "diabetes")

# make ensemble learner
elearner = as_learner(ensemble)

   
ensemble$plot(html = FALSE)


如果我用不同的 set.seed 训练它,我会得到不同的系数。 我认为这主要是由 引起的,可以通过重复交叉验证来缓解。

# Train the Learner:
# seed 1
elearner = as_learner(ensemble)
set.seed(22521136)
elearner$train(train.task) -> seed1

# seed 2
elearner = as_learner(ensemble)
set.seed(12354)
elearner$train(train.task) -> seed2

# different coefficients of the glment  model
coef(seed1$model$glmnet$model, s ="lambda.min")
#> 9 x 1 sparse Matrix of class "dgCMatrix"
#>                        1
#> (Intercept) -6.238598277
#> age          .          
#> glucose      0.023462376
#> insulin     -0.001007037
#> mass         0.055587740
#> pedigree     0.322911217
#> pregnant     0.137419564
#> pressure     .          
#> triceps      .
coef(seed2$model$glmnet$model, s ="lambda.min")
#> 9 x 1 sparse Matrix of class "dgCMatrix"
#>                        1
#> (Intercept) -6.876802620
#> age          .          
#> glucose      0.025601712
#> insulin     -0.001500856
#> mass         0.063029550
#> pedigree     0.464369417
#> pregnant     0.155971123
#> pressure     .          
#> triceps      .

# different coefficients of the final regression model
seed1$model$classif.log_reg$model$coefficients
#>     (Intercept)        superdoc glmnet.prob.neg glmnet.prob.pos 
#>       -9.438452       23.710923        8.726956              NA
seed2$model$classif.log_reg$model$coefficients
#>     (Intercept)        superdoc glmnet.prob.neg glmnet.prob.pos 
#>       0.3698143      23.5362542      -5.5514365              NA

问题:

在哪里以及如何在我的 mlr3 集成模型中输入重复的交叉验证来缓解这些不同的结果?非常感谢任何帮助。

感谢 missuse 的评论,他的精彩教程(Tuning a stacked learner) and mb706's 我想我可以解决我的问题。

"classif.cv_glmnet"替换为"classif.glmnet"

# Add tuning

resampling = rsmp("repeated_cv")
resampling$param_set$values = list(repeats = 10, folds=5)


ps_ens = ParamSet$new(
  list(
    ParamDbl$new("glmnet.alpha", 0, 1),
    ParamDbl$new("glmnet.s", 0, 1)))

auto1 = AutoTuner$new(
  learner = elearner,
  resampling = resampling,
  measure = msr("classif.auc"),
  search_space = ps_ens,
  terminator = trm("evals", n_evals = 5), # to limit running time
  tuner = tnr("random_search")
)

使用不同的 set.seed 进行训练并获得相同的系数

# Train with different set.seed

#first
set.seed(22521136)
at1= auto1
at1$train(train.task) -> seed1

# second
set.seed(12354)
at2= auto1
at2$train(train.task) -> seed2


# Compare coefficients of the learners

# classif.log_reg
seed1$model$learner$model$classif.log_reg$model$coefficients
# (Intercept)        superdoc glmnet.prob.neg glmnet.prob.pos 
# 2.467855       21.570766       -6.966693              NA


seed2$model$learner$model$classif.log_reg$model$coefficients
# (Intercept)        superdoc glmnet.prob.neg glmnet.prob.pos 
# 2.467855       21.570766       -6.966693              NA


#classif.glmnet
coef(at1$learner$model$glmnet$model, alpha=at1$tuning_result$glmnet.alpha,s=at1$tuning_result$glmnet.s)
# 9 x 1 sparse Matrix of class "dgCMatrix"
# 1
# (Intercept) -3.3066981659
# age          0.0076392198
# glucose      0.0077516975
# insulin      0.0003389759
# mass         0.0133955320
# pedigree     0.3256754612
# pregnant     0.0686746156
# pressure     0.0081338885
# triceps     -0.0054976030

coef(at2$learner$model$glmnet$model, alpha=at2$tuning_result$glmnet.alpha,s=at2$tuning_result$glmnet.s)
# 9 x 1 sparse Matrix of class "dgCMatrix"
# 1
# (Intercept) -3.3066981659
# age          0.0076392198
# glucose      0.0077516975
# insulin      0.0003389759
# mass         0.0133955320
# pedigree     0.3256754612
# pregnant     0.0686746156
# pressure     0.0081338885
# triceps     -0.0054976030