如何 Select Voronoi 多边形 PatchCollection 的颜色并为其创建离散颜色条?
How to Select Colors for a PatchCollection of Voronoi Polygons and Create a Discrete Colorbar for it?
我正在尝试根据邻居的数量为 Voronoi 对象着色。我根据这个数字创建了一个颜色列表,范围从 4 到 7。然后我将 PatchCollection 的数组设置为相邻数字的集合。这在技术上是可行的,但是,它选择了一些非常难看的颜色,并且侧面的颜色条是连续的,而它应该是离散的。我更愿意这样做,以便 <= 4 个邻居是蓝色的,5 个邻居是绿色的,6 个邻居是灰色的,> = 7 个邻居是红色的。关于如何解决这些问题的任何想法?
代码:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from scipy.spatial import Voronoi
import curved_analysis as ca
from matplotlib import patches
from matplotlib.collections import PatchCollection
def vor_plot(particles):
vor = Voronoi(particles[0,:,:2])
trial_ridges = vor.ridge_vertices
line_info = []
for first, last in trial_ridges:
if -1 not in (first, last):
line_info.append([vor.vertices[first], vor.vertices[last]])
vor_poly = Voronoi(particles[0,:,:2])
regions = vor_poly.regions
real_regions = []
for inner_list in regions:
if -1 not in inner_list:
real_regions.append(inner_list)
real_regions.remove([])
fig, ax = plt.subplots()
vor_poly = []
colors = []
for gon in real_regions:
xy = vor.vertices[gon]
vor_poly.append(patches.Polygon(xy))
colors.append(xy.shape[0])
lc = LineCollection(line_info, color='k', lw=0.5)
ax.add_collection(lc)
ax.scatter(vor.points[:,0], vor.points[:,1], s = 3)
ax.set_xlim([vor.points[:,0].min()-5, vor.points[:,0].max()+5])
ax.set_ylim([vor.points[:,1].min()-5, vor.points[:,1].max()+5])
colors = np.array(colors)
p = PatchCollection(vor_poly, alpha=0.3)
p.set_array(colors)
fig.colorbar(p, ax=ax)
ax.add_collection(p)
plt.show()
if __name__ == "__main__":
particles = ca.read_xyz("flat.xyz")
vor_plot(particles)
你可以创建一个可以使用的ListedColormap listing the desired colors. To decide which number maps to which color, a norm,第一种颜色固定为4,最后一种颜色固定为7。颜色图和范数都需要分配给 PatchCollection
。要定位刻度标签,可以将 4 个彩色单元格的范围划分为 9 个等距位置,并取奇数索引处的位置。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection, PatchCollection
from scipy.spatial import Voronoi
from matplotlib import patches
from matplotlib.colors import ListedColormap
particles = np.random.rand(1, 20, 2) * 100
vor = Voronoi(particles[0, :, :2])
trial_ridges = vor.ridge_vertices
line_info = []
for first, last in trial_ridges:
if -1 not in (first, last):
line_info.append([vor.vertices[first], vor.vertices[last]])
vor_poly = Voronoi(particles[0, :, :2])
regions = vor_poly.regions
real_regions = []
for inner_list in regions:
if -1 not in inner_list:
real_regions.append(inner_list)
real_regions.remove([])
fig, ax = plt.subplots()
vor_poly = []
colors = []
for gon in real_regions:
xy = vor.vertices[gon]
vor_poly.append(patches.Polygon(xy))
colors.append(xy.shape[0])
lc = LineCollection(line_info, color='k', lw=0.5)
ax.add_collection(lc)
ax.scatter(vor.points[:, 0], vor.points[:, 1], s=3)
ax.set_xlim([vor.points[:, 0].min() - 5, vor.points[:, 0].max() + 5])
ax.set_ylim([vor.points[:, 1].min() - 5, vor.points[:, 1].max() + 5])
cmap = ListedColormap(['dodgerblue', 'limegreen', 'grey', 'crimson'])
colors = np.array(colors)
p = PatchCollection(vor_poly, alpha=0.3, cmap=cmap, norm=plt.Normalize(4, 7))
p.set_array(colors)
ax.add_collection(p)
cbar = fig.colorbar(p, ticks=np.linspace(4, 7, 9)[1::2], ax=ax)
cbar.ax.set_yticklabels(['≤ 4', '5', '6', '≥ 7'])
plt.show()
我正在尝试根据邻居的数量为 Voronoi 对象着色。我根据这个数字创建了一个颜色列表,范围从 4 到 7。然后我将 PatchCollection 的数组设置为相邻数字的集合。这在技术上是可行的,但是,它选择了一些非常难看的颜色,并且侧面的颜色条是连续的,而它应该是离散的。我更愿意这样做,以便 <= 4 个邻居是蓝色的,5 个邻居是绿色的,6 个邻居是灰色的,> = 7 个邻居是红色的。关于如何解决这些问题的任何想法? 代码:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection
from scipy.spatial import Voronoi
import curved_analysis as ca
from matplotlib import patches
from matplotlib.collections import PatchCollection
def vor_plot(particles):
vor = Voronoi(particles[0,:,:2])
trial_ridges = vor.ridge_vertices
line_info = []
for first, last in trial_ridges:
if -1 not in (first, last):
line_info.append([vor.vertices[first], vor.vertices[last]])
vor_poly = Voronoi(particles[0,:,:2])
regions = vor_poly.regions
real_regions = []
for inner_list in regions:
if -1 not in inner_list:
real_regions.append(inner_list)
real_regions.remove([])
fig, ax = plt.subplots()
vor_poly = []
colors = []
for gon in real_regions:
xy = vor.vertices[gon]
vor_poly.append(patches.Polygon(xy))
colors.append(xy.shape[0])
lc = LineCollection(line_info, color='k', lw=0.5)
ax.add_collection(lc)
ax.scatter(vor.points[:,0], vor.points[:,1], s = 3)
ax.set_xlim([vor.points[:,0].min()-5, vor.points[:,0].max()+5])
ax.set_ylim([vor.points[:,1].min()-5, vor.points[:,1].max()+5])
colors = np.array(colors)
p = PatchCollection(vor_poly, alpha=0.3)
p.set_array(colors)
fig.colorbar(p, ax=ax)
ax.add_collection(p)
plt.show()
if __name__ == "__main__":
particles = ca.read_xyz("flat.xyz")
vor_plot(particles)
你可以创建一个可以使用的ListedColormap listing the desired colors. To decide which number maps to which color, a norm,第一种颜色固定为4,最后一种颜色固定为7。颜色图和范数都需要分配给 PatchCollection
。要定位刻度标签,可以将 4 个彩色单元格的范围划分为 9 个等距位置,并取奇数索引处的位置。
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.collections import LineCollection, PatchCollection
from scipy.spatial import Voronoi
from matplotlib import patches
from matplotlib.colors import ListedColormap
particles = np.random.rand(1, 20, 2) * 100
vor = Voronoi(particles[0, :, :2])
trial_ridges = vor.ridge_vertices
line_info = []
for first, last in trial_ridges:
if -1 not in (first, last):
line_info.append([vor.vertices[first], vor.vertices[last]])
vor_poly = Voronoi(particles[0, :, :2])
regions = vor_poly.regions
real_regions = []
for inner_list in regions:
if -1 not in inner_list:
real_regions.append(inner_list)
real_regions.remove([])
fig, ax = plt.subplots()
vor_poly = []
colors = []
for gon in real_regions:
xy = vor.vertices[gon]
vor_poly.append(patches.Polygon(xy))
colors.append(xy.shape[0])
lc = LineCollection(line_info, color='k', lw=0.5)
ax.add_collection(lc)
ax.scatter(vor.points[:, 0], vor.points[:, 1], s=3)
ax.set_xlim([vor.points[:, 0].min() - 5, vor.points[:, 0].max() + 5])
ax.set_ylim([vor.points[:, 1].min() - 5, vor.points[:, 1].max() + 5])
cmap = ListedColormap(['dodgerblue', 'limegreen', 'grey', 'crimson'])
colors = np.array(colors)
p = PatchCollection(vor_poly, alpha=0.3, cmap=cmap, norm=plt.Normalize(4, 7))
p.set_array(colors)
ax.add_collection(p)
cbar = fig.colorbar(p, ticks=np.linspace(4, 7, 9)[1::2], ax=ax)
cbar.ax.set_yticklabels(['≤ 4', '5', '6', '≥ 7'])
plt.show()