尝试使用随机梯度下降实现线性回归
Trying to Implement Linear Regression with Stochastic Gradient Descent
[Dataset]1我正在尝试使用 python 实现随机梯度下降的线性回归。我有使我能够执行此操作的代码,但出于某种原因,它在“row[column] = float(row[column].strip())”处触发错误 - 无法将字符串转换为 float:'C' "。如果有人愿意帮助我解决此错误,我们将不胜感激。
# Linear Regression With Stochastic Gradient Descent for Pima- Indians-Diabetes
from random import seed
from random import randrange
from csv import reader
from math import sqrt
filename = 'C:/Users/Vince/Desktop/University of Wyoming PHD/Year 2/Machine
Learning/Homeworks/Solutions/HW4/pima-indians-diabetes-training.csv'
# Load a CSV file
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(filename)
for row in csv_reader:
if not row:
continue
dataset.append(row)
return dataset
# Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())
# Find the min and max values for each column
def dataset_minmax(dataset):
minmax = list()
for i in range(len(dataset[0])):
col_values = [row[i] for row in dataset]
value_min = min(col_values)
value_max = max(col_values)
minmax.append([value_min, value_max])
return minmax
# Rescale dataset columns to the range 0-1
def normalize_dataset(dataset, minmax):
for row in dataset:
for i in range(len(row)):
row[i] = (row[i] - minmax[i][0]) / (minmax[i][1] - minmax[i][0])
# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split
# Calculate root mean squared error
def rmse_metric(actual, predicted):
sum_error = 0.0
for i in range(len(actual)):
prediction_error = predicted[i] - actual[i]
sum_error += (prediction_error ** 2)
mean_error = sum_error / float(len(actual))
return sqrt(mean_error)
# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
rmse = rmse_metric(actual, predicted)
scores.append(rmse)
return scores
# Make a prediction with coefficients
def predict(row, coefficients):
yhat = coefficients[0]
for i in range(len(row)-1):
yhat += coefficients[i + 1] * row[i]
return yhat
# Estimate linear regression coefficients using stochastic gradient descent
def coefficients_sgd(train, l_rate, n_epoch):
coef = [0.0 for i in range(len(train[0]))]
for epoch in range(n_epoch):
for row in train:
yhat = predict(row, coef)
error = yhat - row[-1]
coef[0] = coef[0] - l_rate * error
for i in range(len(row)-1):
coef[i + 1] = coef[i + 1] - l_rate * error * row[i]
# print(l_rate, n_epoch, error)
return coef
# Linear Regression Algorithm With Stochastic Gradient Descent
def linear_regression_sgd(train, test, l_rate, n_epoch):
predictions = list()
coef = coefficients_sgd(train, l_rate, n_epoch)
for row in test:
yhat = predict(row, coef)
predictions.append(yhat)
return(predictions)
# Linear Regression on Indians Pima Database
seed(1)
# load and prepare data
filename = 'C:/Users/Vince/Desktop/University of Wyoming PHD/Year 2/Machine
Learning/Homeworks/Solutions/HW4/pima-indians-diabetes-training.csv'
dataset = load_csv(filename)
for i in range(len(dataset[0])):
str_column_to_float(dataset, i)
# normalize
minmax = dataset_minmax(dataset)
normalize_dataset(dataset, minmax)
# evaluate algorithm
n_folds = 5
l_rate = 0.01
n_epoch = 5 0
scores = evaluate_algorithm(dataset, linear_regression_sgd, n_folds, l_rate, n_epoch)
print('Scores: %s' % scores)
print('Mean RMSE: %.3f' % (sum(scores)/float(len(scores))))
在函数 load_csv 中,您正在使用 with open(filename, 'r') as file:
但是在下一行中,不是传递文件对象 file
,而是传递 reader 字符串 filename
,并且您的数据集是使用此 filename
字符串创建的,因此当您结束时尝试将字母 'C' 转换为浮点数。
只需将行 reader(filename)
更改为 reader(file)
那应该可以解决您的问题。
添加@Agni 的回答
您正在阅读的 CSV 文件有 header 行
num_preg PlGlcConc BloodP tricept insulin BMI ped_func Age HasDiabetes
当您使用 reader(file)
读取文件然后遍历它时,第一行也会添加到 dataset
中。因此,dataset
列表中的第一个元素是:
>>> dataset
[['num_preg', 'PlGlcConc', 'BloodP', 'tricept', 'insulin', 'BMI', 'ped_func', 'Age', 'HasDiabetes'], ...]
因此,当您尝试将其转换为浮点数时,它会抛出错误,
Could not convert string to float): numpreg
这是最终编辑的代码:
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(file)
fieldnames = next(csv_reader) # Skip the first row and store in case you need it
dataset = list(csv_reader) # You can convert an iterator to list directly
return dataset
[Dataset]1我正在尝试使用 python 实现随机梯度下降的线性回归。我有使我能够执行此操作的代码,但出于某种原因,它在“row[column] = float(row[column].strip())”处触发错误 - 无法将字符串转换为 float:'C' "。如果有人愿意帮助我解决此错误,我们将不胜感激。
# Linear Regression With Stochastic Gradient Descent for Pima- Indians-Diabetes
from random import seed
from random import randrange
from csv import reader
from math import sqrt
filename = 'C:/Users/Vince/Desktop/University of Wyoming PHD/Year 2/Machine
Learning/Homeworks/Solutions/HW4/pima-indians-diabetes-training.csv'
# Load a CSV file
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(filename)
for row in csv_reader:
if not row:
continue
dataset.append(row)
return dataset
# Convert string column to float
def str_column_to_float(dataset, column):
for row in dataset:
row[column] = float(row[column].strip())
# Find the min and max values for each column
def dataset_minmax(dataset):
minmax = list()
for i in range(len(dataset[0])):
col_values = [row[i] for row in dataset]
value_min = min(col_values)
value_max = max(col_values)
minmax.append([value_min, value_max])
return minmax
# Rescale dataset columns to the range 0-1
def normalize_dataset(dataset, minmax):
for row in dataset:
for i in range(len(row)):
row[i] = (row[i] - minmax[i][0]) / (minmax[i][1] - minmax[i][0])
# Split a dataset into k folds
def cross_validation_split(dataset, n_folds):
dataset_split = list()
dataset_copy = list(dataset)
fold_size = int(len(dataset) / n_folds)
for i in range(n_folds):
fold = list()
while len(fold) < fold_size:
index = randrange(len(dataset_copy))
fold.append(dataset_copy.pop(index))
dataset_split.append(fold)
return dataset_split
# Calculate root mean squared error
def rmse_metric(actual, predicted):
sum_error = 0.0
for i in range(len(actual)):
prediction_error = predicted[i] - actual[i]
sum_error += (prediction_error ** 2)
mean_error = sum_error / float(len(actual))
return sqrt(mean_error)
# Evaluate an algorithm using a cross validation split
def evaluate_algorithm(dataset, algorithm, n_folds, *args):
folds = cross_validation_split(dataset, n_folds)
scores = list()
for fold in folds:
train_set = list(folds)
train_set.remove(fold)
train_set = sum(train_set, [])
test_set = list()
for row in fold:
row_copy = list(row)
test_set.append(row_copy)
row_copy[-1] = None
predicted = algorithm(train_set, test_set, *args)
actual = [row[-1] for row in fold]
rmse = rmse_metric(actual, predicted)
scores.append(rmse)
return scores
# Make a prediction with coefficients
def predict(row, coefficients):
yhat = coefficients[0]
for i in range(len(row)-1):
yhat += coefficients[i + 1] * row[i]
return yhat
# Estimate linear regression coefficients using stochastic gradient descent
def coefficients_sgd(train, l_rate, n_epoch):
coef = [0.0 for i in range(len(train[0]))]
for epoch in range(n_epoch):
for row in train:
yhat = predict(row, coef)
error = yhat - row[-1]
coef[0] = coef[0] - l_rate * error
for i in range(len(row)-1):
coef[i + 1] = coef[i + 1] - l_rate * error * row[i]
# print(l_rate, n_epoch, error)
return coef
# Linear Regression Algorithm With Stochastic Gradient Descent
def linear_regression_sgd(train, test, l_rate, n_epoch):
predictions = list()
coef = coefficients_sgd(train, l_rate, n_epoch)
for row in test:
yhat = predict(row, coef)
predictions.append(yhat)
return(predictions)
# Linear Regression on Indians Pima Database
seed(1)
# load and prepare data
filename = 'C:/Users/Vince/Desktop/University of Wyoming PHD/Year 2/Machine
Learning/Homeworks/Solutions/HW4/pima-indians-diabetes-training.csv'
dataset = load_csv(filename)
for i in range(len(dataset[0])):
str_column_to_float(dataset, i)
# normalize
minmax = dataset_minmax(dataset)
normalize_dataset(dataset, minmax)
# evaluate algorithm
n_folds = 5
l_rate = 0.01
n_epoch = 5 0
scores = evaluate_algorithm(dataset, linear_regression_sgd, n_folds, l_rate, n_epoch)
print('Scores: %s' % scores)
print('Mean RMSE: %.3f' % (sum(scores)/float(len(scores))))
在函数 load_csv 中,您正在使用 with open(filename, 'r') as file:
但是在下一行中,不是传递文件对象 file
,而是传递 reader 字符串 filename
,并且您的数据集是使用此 filename
字符串创建的,因此当您结束时尝试将字母 'C' 转换为浮点数。
只需将行 reader(filename)
更改为 reader(file)
那应该可以解决您的问题。
添加@Agni 的回答
您正在阅读的 CSV 文件有 header 行
num_preg PlGlcConc BloodP tricept insulin BMI ped_func Age HasDiabetes
当您使用 reader(file)
读取文件然后遍历它时,第一行也会添加到 dataset
中。因此,dataset
列表中的第一个元素是:
>>> dataset
[['num_preg', 'PlGlcConc', 'BloodP', 'tricept', 'insulin', 'BMI', 'ped_func', 'Age', 'HasDiabetes'], ...]
因此,当您尝试将其转换为浮点数时,它会抛出错误,
Could not convert string to float): numpreg
这是最终编辑的代码:
def load_csv(filename):
dataset = list()
with open(filename, 'r') as file:
csv_reader = reader(file)
fieldnames = next(csv_reader) # Skip the first row and store in case you need it
dataset = list(csv_reader) # You can convert an iterator to list directly
return dataset