R - 具有宽数据的格子水平图轴调整

R - Lattice levelplot axis adjustments with wide data

我正在尝试使用 levelplot 在热图中绘制一些气溶胶粒子数据。我目前正在使用如下所示的广泛数据集:

df <- read.delim("location/data.txt", sep = ",")
rownames(df) <- APSDIAM
colnames(df) <- LocalDateTime

df
       2021-03-03 15:19:50 2021-03-03 15:24:50 2021-03-03 15:29:50 2021-03-03 15:34:50
<0.523 "13.5077"           "9.68141"           "3.87432"           "1.56717"          
0.542  "9.60621"           "8.17904"           "3.33433"           "1.51037"          
0.583  "9.33741"           "8.45423"           "3.68633"           "1.59357"          
0.626  "8.35823"           "8.60143"           "3.74393"           "1.54237"          
0.673  "7.41105"           "8.30703"           "3.57113"           "1.59997"          
0.723  "6.65587"           "7.88464"           "3.50073"           "1.62557"          
0.777  "6.16308"           "7.43025"           "3.09754"           "1.37597"          
0.835  "4.7935"            "6.68147"           "2.82234"           "1.39517"          
0.898  "4.39671"           "5.91988"           "2.59195"           "1.10718"          
0.965  "3.55833"           "4.8895"            "2.43195"           "0.972781"         
1.037  "2.82234"           "4.15992"           "1.73437"           "0.665587"         
1.114  "2.43835"           "3.66713"           "1.49757"           "0.639987"         
1.197  "1.91356"           "2.93114"           "1.07518"           "0.454391"         
1.286  "1.47837"           "2.27835"           "1.09438"           "0.447991"         
1.382  "1.38237"           "1.93916"           "0.940781"          "0.460791"         
1.486  "1.26717"           "1.63197"           "0.710386"          "0.339193"         
1.596  "0.99838"           "1.53597"           "0.620788"          "0.211196"         
1.715  "0.844783"          "1.48477"           "0.435191"          "0.223996"         
1.843  "0.735985"          "1.05598"           "0.49279"           "0.191996"         
1.981  "0.601588"          "0.825583"          "0.441591"          "0.211196"         
2.129  "0.47999"           "0.639987"          "0.294394"          "0.166397"         
2.288  "0.390392"          "0.563189"          "0.223996"          "0.121598"         
2.458  "0.358393"          "0.531189"          "0.204796"          "0.0319994"        
2.642  "0.268795"          "0.230395"          "0.140797"          "0.0447991"        
2.839  "0.159997"          "0.300794"          "0.159997"          "0.0191996"        
3.051  "0.198396"          "0.198396"          "0.0767985"         "0.0383992"        
3.278  "0.140797"          "0.147197"          "0.0383992"         "0.051199"         
3.523  "0.0959981"         "0.121598"          "0.0639987"         "0.0191996"        
3.786  "0.0703986"         "0.0191996"         "0.0191996"         "0.0191996"        
4.068  "0.0319994"         "0.0639987"         "0.0447991"         "0.0127997"        
4.371  "0.0447991"         "0.0383992"         "0.00639987"        "0.00639987"       
4.698  "0.0127997"         "0.0127997"         "0.0191996"         "0.0191996"        
5.048  "0.0319994"         "0"                 "0.0127997"         "0.0127997"        
5.425  "0.00639987"        "0.0127997"         "0.00639987"        "0"                
5.829  "0"                 "0.00639987"        "0"                 "0"                
6.264  "0.00639987"        "0"                 "0"                 "0"                
6.732  "0.00639987"        "0"                 "0"                 "0"                
7.234  "0"                 "0"                 "0"                 "0"                
7.774  "0"                 "0"                 "0"                 "0"                
8.354  "0"                 "0"                 "0"                 "0"                
8.977  "0"                 "0"                 "0"                 "0"                
9.647  "0"                 "0"                 "0"                 "0"                
10.37  "0"                 "0"                 "0"                 "0"                
11.14  "0"                 "0"                 "0"                 "0"                
11.97  "0"                 "0"                 "0"                 "0"                
12.86  "0"                 "0"                 "0"                 "0"                
13.82  "0"                 "0"                 "0"                 "0"                
14.86  "0"                 "0"                 "0"                 "0"                
15.96  "0"                 "0"                 "0"                 "0"                
17.15  "0"                 "0"                 "0"                 "0"                
18.43  "0"                 "0"                 "0"                 "0"                
19.81  "0"                 "0"                 "0"                 "0"                
       2021-03-03 15:39:50 2021-03-03 16:09:50 2021-03-03 16:14:50 2021-03-03 16:19:50
<0.523 "0.810384"          "0.352793"          "0.332793"          "0.347993"         
0.542  "0.780784"          "0.313594"          "0.275194"          "0.351993"         
0.583  "0.780784"          "0.217596"          "0.319994"          "0.281594"         
0.626  "0.812784"          "0.249595"          "0.217596"          "0.262395"         
0.673  "0.844783"          "0.211196"          "0.262395"          "0.236795"         
0.723  "1.03038"           "0.115198"          "0.185596"          "0.217596"         
0.777  "0.857583"          "0.179196"          "0.191996"          "0.140797"         
0.835  "0.870383"          "0.172797"          "0.159997"          "0.140797"         
0.898  "0.684786"          "0.0639987"         "0.102398"          "0.0703986"        
0.965  "0.563189"          "0.102398"          "0.0959981"         "0.0767985"        
1.037  "0.435191"          "0.0831983"         "0.108798"          "0.0767985"        
1.114  "0.396792"          "0.0703986"         "0.051199"          "0.0255995"        
1.197  "0.319994"          "0.051199"          "0.0319994"         "0.0383992"        
1.286  "0.319994"          "0.0191996"         "0.0191996"         "0.0191996"        
1.382  "0.249595"          "0.00639987"        "0.00639987"        "0.0255995"        
1.486  "0.198396"          "0.0255995"         "0.0127997"         "0.0191996"        
1.596  "0.159997"          "0.0255995"         "0.00639987"        "0.0255995"        
1.715  "0.121598"          "0.0127997"         "0.0127997"         "0.00639987"       
1.843  "0.0959981"         "0.0127997"         "0.0255995"         "0"                
1.981  "0.115198"          "0.0127997"         "0"                 "0.0127997"        
2.129  "0.051199"          "0.0191996"         "0.0319994"         "0"                
2.288  "0.0575988"         "0.00639987"        "0.0127997"         "0"                
2.458  "0.0127997"         "0"                 "0.0127997"         "0"                
2.642  "0.0383992"         "0.00639987"        "0.0127997"         "0"                
2.839  "0.0639987"         "0"                 "0.00639987"        "0"                
3.051  "0.0191996"         "0.00639987"        "0"                 "0.00639987"       
3.278  "0.0191996"         "0"                 "0"                 "0"                
3.523  "0.0127997"         "0.00639987"        "0"                 "0"                
3.786  "0.0191996"         "0.00639987"        "0"                 "0"                
4.068  "0.00639987"        "0"                 "0"                 "0"                
4.371  "0"                 "0"                 "0"                 "0"                
4.698  "0"                 "0"                 "0"                 "0"                
5.048  "0"                 "0"                 "0"                 "0"                
5.425  "0"                 "0"                 "0"                 "0"                
5.829  "0"                 "0"                 "0"                 "0"                
6.264  "0"                 "0"                 "0"                 "0"                
6.732  "0"                 "0"                 "0"                 "0"                
7.234  "0"                 "0"                 "0"                 "0"                
7.774  "0"                 "0"                 "0"                 "0"                
8.354  "0"                 "0"                 "0"                 "0"                
8.977  "0"                 "0"                 "0"                 "0"                
9.647  "0"                 "0"                 "0"                 "0"                
10.37  "0"                 "0"                 "0"                 "0"                
11.14  "0"                 "0"                 "0"                 "0"                
11.97  "0"                 "0"                 "0"                 "0"                
12.86  "0"                 "0"                 "0"                 "0"                
13.82  "0"                 "0"                 "0"                 "0"                
14.86  "0"                 "0"                 "0"                 "0"                
15.96  "0"                 "0"                 "0"                 "0"                
17.15  "0"                 "0"                 "0"                 "0"                
18.43  "0"                 "0"                 "0"                 "0"                
19.81  "0"                 "0"                 "0"                 "0"                
       2021-03-03 16:24:50 2021-03-03 16:29:50 2021-03-03 16:59:50 2021-03-03 17:04:50
<0.523 "0.51199"           "0.587188"          "0.198396"          "0.0743985"        
0.542  "0.49919"           "0.51839"           "0.179196"          "0.0895982"        
0.583  "0.454391"          "0.50559"           "0.211196"          "0.108798"         
0.626  "0.287994"          "0.390392"          "0.300794"          "0.0767985"        
0.673  "0.294394"          "0.383992"          "0.172797"          "0.127997"         
0.723  "0.230395"          "0.364793"          "0.204796"          "0.102398"         
0.777  "0.179196"          "0.249595"          "0.191996"          "0.140797"         
0.835  "0.140797"          "0.185596"          "0.198396"          "0.134397"         
0.898  "0.108798"          "0.140797"          "0.134397"          "0.102398"         
0.965  "0.0575988"         "0.108798"          "0.179196"          "0.0767985"        
1.037  "0.0831983"         "0.0959981"         "0.140797"          "0.0639987"        
1.114  "0.051199"          "0.0575988"         "0.0959981"         "0.0447991"        
1.197  "0.0319994"         "0.0639987"         "0.0767985"         "0.051199"         
1.286  "0.0255995"         "0.0319994"         "0.0447991"         "0.0703986"        
1.382  "0.051199"          "0.0319994"         "0.0703986"         "0.0319994"        
1.486  "0"                 "0.0127997"         "0.0319994"         "0.0447991"        
1.596  "0.0191996"         "0.0127997"         "0.0127997"         "0.0383992"        
1.715  "0.0255995"         "0.00639987"        "0.0383992"         "0.0319994"        
1.843  "0.0191996"         "0.00639987"        "0.051199"          "0"                
1.981  "0.0127997"         "0.0191996"         "0.0127997"         "0.0191996"        
2.129  "0"                 "0.0191996"         "0.0127997"         "0"                
2.288  "0.00639987"        "0"                 "0.00639987"        "0.00639987"       
2.458  "0.00639987"        "0"                 "0.0255995"         "0.0127997"        
2.642  "0.0127997"         "0.00639987"        "0"                 "0"                
2.839  "0"                 "0"                 "0"                 "0"                
3.051  "0"                 "0"                 "0.0127997"         "0"                
3.278  "0"                 "0"                 "0"                 "0"                
3.523  "0"                 "0"                 "0"                 "0"                
3.786  "0"                 "0"                 "0"                 "0"                
4.068  "0"                 "0"                 "0"                 "0"                
4.371  "0"                 "0"                 "0"                 "0"                
4.698  "0"                 "0"                 "0"                 "0"                
5.048  "0"                 "0"                 "0"                 "0"                
5.425  "0"                 "0"                 "0"                 "0"                
5.829  "0"                 "0"                 "0"                 "0"                
6.264  "0"                 "0"                 "0"                 "0"                
6.732  "0"                 "0"                 "0"                 "0"                
7.234  "0"                 "0"                 "0"                 "0"                
7.774  "0"                 "0"                 "0"                 "0"                
8.354  "0"                 "0"                 "0"                 "0"                
8.977  "0"                 "0"                 "0"                 "0"                
9.647  "0"                 "0"                 "0"                 "0"                
10.37  "0"                 "0"                 "0"                 "0"                
11.14  "0"                 "0"                 "0"                 "0"                
11.97  "0"                 "0"                 "0"                 "0"                
12.86  "0"                 "0"                 "0"                 "0"                
13.82  "0"                 "0"                 "0"                 "0"                
14.86  "0"                 "0"                 "0"                 "0"                
15.96  "0"                 "0"                 "0"                 "0"                
17.15  "0"                 "0"                 "0"                 "0"                
18.43  "0"                 "0"                 "0"                 "0"                
19.81  "0"                 "0"                 "0"                 "0"                
       2021-03-03 17:09:50 2021-03-03 17:14:50 2021-03-03 17:19:50
<0.523 "0.050399"          "0.050399"          "0.0543989"        
0.542  "0.051199"          "0.0639987"         "0.0447991"        
0.583  "0.0959981"         "0.0831983"         "0.0703986"        
0.626  "0.102398"          "0.0831983"         "0.0639987"        
0.673  "0.0639987"         "0.0767985"         "0.108798"         
0.723  "0.115198"          "0.0831983"         "0.127997"         
0.777  "0.0959981"         "0.0831983"         "0.108798"         
0.835  "0.108798"          "0.0895982"         "0.0639987"        
0.898  "0.0639987"         "0.0575988"         "0.0703986"        
0.965  "0.0255995"         "0.0319994"         "0.0767985"        
1.037  "0.0447991"         "0.0127997"         "0.0383992"        
1.114  "0.0319994"         "0.0383992"         "0.0191996"        
1.197  "0.0447991"         "0.0383992"         "0.0639987"        
1.286  "0.0127997"         "0.0127997"         "0.00639987"       
1.382  "0.0127997"         "0.0127997"         "0.0383992"        
1.486  "0.0127997"         "0.0127997"         "0.0191996"        
1.596  "0.00639987"        "0.0191996"         "0"                
1.715  "0.0127997"         "0.0127997"         "0.0191996"        
1.843  "0.0191996"         "0.00639987"        "0.00639987"       
1.981  "0.0191996"         "0.0191996"         "0.0191996"        
2.129  "0.0127997"         "0"                 "0.0191996"        
2.288  "0.00639987"        "0.0191996"         "0.00639987"       
2.458  "0.00639987"        "0"                 "0.0127997"        
2.642  "0.00639987"        "0.0127997"         "0"                
2.839  "0"                 "0"                 "0"                
3.051  "0"                 "0"                 "0.00639987"       
3.278  "0"                 "0"                 "0.00639987"       
3.523  "0.00639987"        "0"                 "0"                
3.786  "0"                 "0"                 "0"                
4.068  "0"                 "0"                 "0"                
4.371  "0"                 "0"                 "0"                
4.698  "0"                 "0"                 "0"                
5.048  "0"                 "0"                 "0"                
5.425  "0"                 "0"                 "0"                
5.829  "0"                 "0"                 "0"                
6.264  "0"                 "0"                 "0"                
6.732  "0"                 "0"                 "0"                
7.234  "0"                 "0"                 "0"                
7.774  "0"                 "0"                 "0"                
8.354  "0"                 "0"                 "0"                
8.977  "0"                 "0"                 "0"                
9.647  "0"                 "0"                 "0"                
10.37  "0"                 "0"                 "0"                
11.14  "0"                 "0"                 "0"                
11.97  "0"                 "0"                 "0"                
12.86  "0"                 "0"                 "0"                
13.82  "0"                 "0"                 "0"                
14.86  "0"                 "0"                 "0"                
15.96  "0"                 "0"                 "0"                
17.15  "0"                 "0"                 "0"                
18.43  "0"                 "0"                 "0"                
19.81  "0"                 "0"                 "0"                

然后我尝试使用我在网站上找到的代码 https://www.r-graph-gallery.com/27-levelplot-with-lattice.html 建议使用宽数据我将其作为矩阵输入,没有通常的 'z ~ x*y' 部分。

dfmat <- as.matrix(df)
levelplot(t(dfmat), col.regions = magma(100))

我不知道怎么修改这个数字。我想更改 y 轴,将大小比例(<0.523 到 19.81,原始 df 数据中的行)设置为对数比例,而不列出所有单个值刻度。同样,我希望能够使用 LocalDateTime 清理 x 轴,以减少合理 space 的刻度。该代码的数字也非常窄,我相信这是因为它试图为数据制作完美的正方形,尽管列数多于行数。

我可以使用 Igor 根据需要绘制数据,如下所示,但我希望能够在 R 中复制它。

我试图以 'z~x*y' 格式输入数据,但我没有成功,我未能正确绘制数据,结果得到了这个。

如有任何帮助或建议,我们将不胜感激!如果您还有其他问题或需要更多信息,我会尽力提供。

我已经很久没有用过 lattice 了;这是 ggplot2 实现。

library(dplyr)
library(tidyr)
library(tibble)
library(ggplot2)
library(viridisLite)

# tidy format needed
df1 <- df %>% 
    rownames_to_column(var = "Aerodynamic Diameter (um)") %>% 
    pivot_longer(cols = -one_of("Aerodynamic Diameter (um)"), 
        names_to = "Timestamp", 
        values_to = "Value") %>% 
    mutate(
        `Aerodynamic Diameter (um)` = as.numeric(`Aerodynamic Diameter (um)`),
        Timestamp = as.POSIXct(Timestamp, format = "%Y-%m-%d %H:%M:%S"))

# Igor padded values, so manually set tile width
ggplot(data = df1, 
    mapping = aes(
        x = Timestamp, 
        y = `Aerodynamic Diameter (um)`, 
        fill = Value)) + 
    geom_tile(height = 0.1, width = 2000) + 
    scale_fill_gradientn("", 
        colours = magma(50, begin = 0.2), 
        breaks = 0:7 * 2, limits = c(0, 14)) + 
    scale_y_log10(breaks = c(5:10/10, 2:10, 20), 
        expand = c(0, 0)) + 
    scale_x_datetime(expand = c(0, 0)) +
    xlab(as.Date(df1$Timestamp[1])) + 
    ylab("Aerodynamic Diameter (\u03BCm)") +
    theme(legend.key.height = unit(1.4, 'cm'))