在 dplyr 中突变多个 cumsum

Mutate multiple cumsum in dplyr

我正在尝试用 mutate 开发一个 cumsum。挑战在于我有 10 个栏目要做,而且我知道如何一一完成。有什么方法可以让我做类似 mutate(across(all_of(c(3:4)), ~cumsum(c(3:4))) 的事情吗?

cat %>% 
  group_by(animals) %>%
  mutate(weight1 = cumsum(weight1),
         weight2 = cumsum(weight2))
structure(list(animals = c("E1", "E1", "E1", 
"E2", "E2", "E2"), period = structure(c(18690, 
18697, 18704, 18690, 18697, 18704), class = "Date"), weight1 = c(704, 
734, 653, 851, 911, 829), weight2 = c(0, 235, 325, 0, 148, 
200)), row.names = c(NA, -6L), class = c("data.table", "data.frame")) 

预期输出:

  animals period     weight1 weight2
  <chr>   <date>       <dbl>   <dbl>
1 E1      2021-03-04     704       0
2 E1      2021-03-11    1438     235
3 E1      2021-03-18    2091     560
4 E2      2021-03-04     851       0
5 E2      2021-03-11    1762     148
6 E2      2021-03-18    2591     348

尝试这样做

df <- structure(list(animals = c("E1", "E1", "E1", 
                           "E2", "E2", "E2"), period = structure(c(18690, 
                                                                   18697, 18704, 18690, 18697, 18704), class = "Date"), weight1 = c(704, 
                                                                                                                                    734, 653, 851, 911, 829), weight2 = c(0, 235, 325, 0, 148, 
                                                                                                                                                                          200)), row.names = c(NA, -6L), class = c("data.table", "data.frame")) 

library(dplyr)

df %>% 
  group_by(animals) %>% 
  mutate(across(starts_with("weight"), cumsum))
#> # A tibble: 6 x 4
#> # Groups:   animals [2]
#>   animals period     weight1 weight2
#>   <chr>   <date>       <dbl>   <dbl>
#> 1 E1      2021-03-04     704       0
#> 2 E1      2021-03-11    1438     235
#> 3 E1      2021-03-18    2091     560
#> 4 E2      2021-03-04     851       0
#> 5 E2      2021-03-11    1762     148
#> 6 E2      2021-03-18    2591     348

reprex package (v1.0.0)

于 2021 年 3 月 24 日创建

vars <- names(df)[3:4]

df %>% group_by(animals) %>% mutate(across(all_of(vars), cumsum))

您尝试执行的操作会出错。一旦你 group_by(animals)mutate 只能操作三列。所以你可以使用:

cat %>% 
  group_by(animals) %>%
  mutate(across(2:3, cumsum))
# A tibble: 6 x 4
# Groups:   animals [2]
  animals period     weight1 weight2
  <chr>   <date>       <dbl>   <dbl>
1 E1      2021-03-04     704       0
2 E1      2021-03-11    1438     235
3 E1      2021-03-18    2091     560
4 E2      2021-03-04     851       0
5 E2      2021-03-11    1762     148
6 E2      2021-03-18    2591     348

但是这种方法要求您知道新索引是什么。最好以编程方式尝试一些东西。如果所有的列都是权重,你可以使用:

cat %>% 
  group_by(animals) %>%
  mutate(across(starts_with("weight"), cumsum))

或者如果您只想对所有数字列进行操作:

cat %>% 
  group_by(animals) %>%
  mutate(across(where(is.numeric), cumsum))

后两种方法都能提供您想要的输出。

基础 R 解决方案:

num_col_idx <- vapply(df, is.numeric, logical(1))

cbind(df[,!num_col_idx],
      data.frame(do.call(rbind, lapply(
        split(df[, num_col_idx], df$animals), cumsum)), row.names = NULL))