打印包含每个查询的准确度、精确度、召回率和 F1 分数的字典
Print dictionary containing accuracy, precision, recall and F1-score for each query
我有一个示例数据集如下。所有特征都是分类的,标签是 0 和 1 的二进制。
我将决策树应用于分类问题。问题是如何打印名为 query_results
的字典,其中包含评估集中每个查询的准确度、精确度、召回率和 F1 分数 {'query1':{'accuracy':value,'precision':value,...},'query2':{...}}
预期结果:
{'query1':{'accuracy':value,'precision':value,...},'query2':{...}}
{"t-shirt": 'accuracy': 90% ,'precision':91%, "recall" : 90%, "F1_score" :90%
shoes : 'accuracy': 90% ,'precision':91%, "recall" : 90%, "F1_score" :90%
skirt : 'accuracy': 80% ,'precision':91%, "recall" : 90%, "F1_score" :90%
.. }
query price product silhouette brand color upper_material pattern label
1 t-shirt low. shoe backless_slipper Guess schwarz Kunststoff unifarben 1
2 t-shirt low shoe backless_slipper Tommy red Textil gestreift 1
dictionary = {"query1": {"Accuracy": "90", "Precision": "91", "Recall": "90"}, "query2": {"Accuracy": "90", "Precision": "94", "Recall": "90"}}
print(query1+' '+str(dictionary.get('query1')))
这是一个常用代码,可以循环使用它以获得更多 values.I 已经为 this.for 设置了静态值,您可以设置动态变量。
我有一个示例数据集如下。所有特征都是分类的,标签是 0 和 1 的二进制。
我将决策树应用于分类问题。问题是如何打印名为 query_results
的字典,其中包含评估集中每个查询的准确度、精确度、召回率和 F1 分数 {'query1':{'accuracy':value,'precision':value,...},'query2':{...}}
预期结果:
{'query1':{'accuracy':value,'precision':value,...},'query2':{...}}
{"t-shirt": 'accuracy': 90% ,'precision':91%, "recall" : 90%, "F1_score" :90%
shoes : 'accuracy': 90% ,'precision':91%, "recall" : 90%, "F1_score" :90%
skirt : 'accuracy': 80% ,'precision':91%, "recall" : 90%, "F1_score" :90%
.. }
query price product silhouette brand color upper_material pattern label
1 t-shirt low. shoe backless_slipper Guess schwarz Kunststoff unifarben 1
2 t-shirt low shoe backless_slipper Tommy red Textil gestreift 1
dictionary = {"query1": {"Accuracy": "90", "Precision": "91", "Recall": "90"}, "query2": {"Accuracy": "90", "Precision": "94", "Recall": "90"}}
print(query1+' '+str(dictionary.get('query1')))
这是一个常用代码,可以循环使用它以获得更多 values.I 已经为 this.for 设置了静态值,您可以设置动态变量。