读取 Pandas 数据框中的嵌套 json 文件

Reading Nested json File in Pandas Dataframe

我有一个具有以下结构的 JSON 文件(它不是完整的 json 文件,但结构相同):

{"data":[{"referenced_tweets":[{"type":"retweeted","id":"xxxxxxx"}],"text":"abcdefghijkl","created_at":"2020-03-09T00:11:41.000Z","author_id":"xxxxx","id":"xxxxxxxxxxx"},{"referenced_tweets":[{"type":"retweeted","id":"xxxxxxxxxxxx"}],"text":"abcdefghijkl","created_at":"2020-03-09T00:11:41.000Z","author_id":"xxxxxxxx","id":"xxxxxxxxxxx"}]}
..... 

//The rest of json continues with the same structure, but referenced_tweets is not always present  

我的问题:如何将此数据加载到包含以下列的数据框中:typeid(referenced_tweet id)textcreated_atauthor_idid (tweet id)?

到目前为止我能做什么:我能得到以下列:

referenced_tweets text cerated_at author_id id (tweet id)
[{'type': 'xx', 'id': 'xxx'}] xxx xxxx xxxxx xxxxxxxxxxxx

这里是获取上面的代码table:

with open('Test_SampleRetweets.json') as json_file:
    data_list = json.load(json_file)

df1 = json_normalize(data_list, 'data')
df1.head()

但是,我想在单独的列中获取 typeid(在 referenced_tweets 中),到目前为止我可以获得以下内容:

type id (referenced_tweet id)
xxxx xxxxxxxxxxxxxxxxxxxxxxx

这里是获取上述内容的代码 table:

df2 = json_normalize(data_list, record_path=['data','referenced_tweets'], errors='ignore')
df2.head()

问题是什么? 我想把所有东西都集中在一个 table 中,即 table 类似于这里的第一个,但是typeid 在不同的列中(如第二个 table)。因此,最后一列应该是:typeid (referenced_tweet id)textcreated_atauthor_idid (tweet id)

感谢任何帮助

谢谢

import pandas as pd


with open('Test_SampleRetweets.json') as json_file:
    raw_data = json.load(json_file)


data = []
for item in raw_data["data"]:
    item["tweet_id"] = item["id"]
    item.update(item["referenced_tweets"][0])
    del item["referenced_tweets"]
    data.append(item)


df1 = pd.DataFrame(data)
print(df1.head())

json_normalize() 中使用嵌套的 json 时,您需要使用 meta 参数来获取元级别中的字段。所以,基本上你正在做的是获取嵌套并对其进行规范化,而不是从更高级别加入其他几个字段。显然,您可以将其组合用于多个嵌套字段,请参阅 以供参考。

import json
import pandas as pd

j = '{"data":[{"referenced_tweets":[{"type":"retweeted","id":"xxxxxxx"}],"text":"abcdefghijkl","created_at":"2020-03-09T00:11:41.000Z","author_id":"xxxxx","id":"xxxxxxxxxxx"},{"referenced_tweets":[{"type":"retweeted","id":"xxxxxxxxxxxx"}],"text":"abcdefghijkl","created_at":"2020-03-09T00:11:41.000Z","author_id":"xxxxxxxx","id":"xxxxxxxxxxx"}]}'
j = json.loads(j)

# since you have id twice, it's a bit more complicated and you need to 
# introduce a meta prefix
df = pd.json_normalize(
    j,
    record_path=["data", 'referenced_tweets'],
    meta_prefix="data.",
    meta=[["data", "text"], ["data", "created_at"], ["data", "author_id"], ["data", "id"]]
    )
print(df)

导致:

        type            id data.data.text      data.data.created_at  \
0  retweeted       xxxxxxx   abcdefghijkl  2020-03-09T00:11:41.000Z   
1  retweeted  xxxxxxxxxxxx   abcdefghijkl  2020-03-09T00:11:41.000Z   

  data.data.author_id data.data.id  
0               xxxxx  xxxxxxxxxxx  
1            xxxxxxxx  xxxxxxxxxx

我更喜欢这种方式,因为它看起来更容易处理

df = pd.json_normalize(
    j["data"],
    record_path=['referenced_tweets'],
    meta_prefix="data.",
    meta=["text", "created_at", "author_id", "id"]
    )
print(df)

导致:

        type            id     data.text           data.created_at  \
0  retweeted       xxxxxxx  abcdefghijkl  2020-03-09T00:11:41.000Z   
1  retweeted  xxxxxxxxxxxx  abcdefghijkl  2020-03-09T00:11:41.000Z   

  data.author_id      data.id  
0          xxxxx  xxxxxxxxxxx  
1       xxxxxxxx  xxxxxxxxxxx