摘要 Table(均值 + std.error)和 2 向方差分析的 p 值
Summary Table (mean + std.error) with p-values for 2-way anova
我正在尝试制作一个 table 输出我们通常通过 2-way anova 分析的大型研究的汇总统计数据,查看两个变量的主要影响以及交互作用。
我想要一种快速 运行 统计数据的方法,并以易于阅读的格式输出它们,如果格式更好,那就更好了。
我已经能够获得 2-way anova 输出,而且我还使用了 gtsummary 包和 tbl_summary
来制作 table。但是,我不知道如何按 1 个以上的变量进行分组。我的解决方案是创建一个结合了两个自变量的新变量,只是为了将数据分成正确的组。
下面的可重现示例。
我想知道是否有一种方法可以像我一样使用均值 (sem) 输出制作 table,但得到我的 2 向方差分析的结果(也粘贴在下面)。在这个巨大的例子中,我想要一列用于“性”的主要影响的 P 值,下一列用于“登船”的 p 值主要影响,然后是交互的 p 值。
有什么想法吗?
library(titanic)
library(tidyverse)
library(gtsummary)
library(plotrix) #has a std.error function
##I really want to look at a 2-way anova, looking for the p-value for Sex, Embarked, and their interaction.
#This code just allows me to make a table with the 4 columns I want, but of course it now won't do the correct stats.
df <- titanic_train %>%
filter(Embarked != "C" & Embarked != "") %>%
mutate(grp = paste(Sex, Embarked)) #add a new column that combines Sex & Pclass
#code to make my table
table1 <- df %>%
select(grp, Age, Fare, Survived) %>%
tbl_summary(
by = grp, ##can't figure out a way to put 2 variables here (Sex & Embarked)
missing = "ifany",
statistic = all_continuous() ~ "{mean} ({std.error})",
digits = all_continuous() ~ 1) %>% #this puts 1 decimal place for all values
modify_header(stat_by = md("**{level}**<br>N = {n}")) %>%
bold_labels() %>%
modify_spanning_header(all_stat_cols() ~ "**These are the Columns I Want**") %>%
add_p(test = everything() ~ "aov", ##This is a 1-way ANOVA, but I need 2 variables
)
table1
#these are the p-values I want in my table:
two_way_anova_age <- aov(Age ~ Sex * Embarked, data = df)
summary(two_way_anova_age)
two_way_anova_fare <- aov(Fare ~ Sex * Embarked, data = df)
summary(two_way_anova_fare)
two_way_anova_surv <- aov(Survived ~ Sex * Embarked, data = df)
summary(two_way_anova_surv)
以下是如何将结果合并到 gtsummary table。
library(gtsummary)
library(titanic)
library(tidyverse)
library(plotrix) #has a std.error function
packageVersion("gtsummary")
#> [1] '1.4.0'
# create smaller version of the dataset
df <-
titanic_train %>%
select(Sex, Embarked, Age, Fare) %>%
filter(Embarked != "") # deleting empty Embarked status
# first, write a little function to get the 2-way ANOVA p-values in a table
# function to get 2-way ANOVA p-values in tibble
twoway_p <- function(variable) {
paste(variable, "~ Sex * Embarked") %>%
as.formula() %>%
aov(data = df) %>%
broom::tidy() %>%
select(term, p.value) %>%
filter(complete.cases(.)) %>%
pivot_wider(names_from = term, values_from = p.value) %>%
mutate(
variable = .env$variable,
row_type = "label"
)
}
# add all results to a single table (will be merged with gtsummary table in next step)
twoway_results <-
bind_rows(
twoway_p("Age"),
twoway_p("Fare")
)
twoway_results
#> # A tibble: 2 x 5
#> Sex Embarked `Sex:Embarked` variable row_type
#> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 0.00823 3.97e- 1 0.611 Age label
#> 2 0.0000000191 4.27e-16 0.0958 Fare label
tbl <-
# first build a stratified `tbl_summary()` table to get summary stats by two variables
df %>%
tbl_strata(
strata = Sex,
.tbl_fun =
~.x %>%
tbl_summary(
by = Embarked,
missing = "no",
statistic = all_continuous() ~ "{mean} ({std.error})",
digits = everything() ~ 1
) %>%
modify_header(all_stat_cols() ~ "**{level}**")
) %>%
# merge the 2way ANOVA results into tbl_summary table
modify_table_body(
~.x %>%
left_join(
twoway_results,
by = c("variable", "row_type")
)
) %>%
# by default the new columns are hidden, add a header to unhide them
modify_header(list(
Sex ~ "**Sex**",
Embarked ~ "**Embarked**",
`Sex:Embarked` ~ "**Sex * Embarked**"
)) %>%
# adding spanning header to analysis results
modify_spanning_header(c(Sex, Embarked, `Sex:Embarked`) ~ "**Two-way ANOVA p-values**") %>%
# format the p-values with a pvalue formatting function
modify_fmt_fun(c(Sex, Embarked, `Sex:Embarked`) ~ style_pvalue) %>%
# update the footnote to be nicer looking
modify_footnote(all_stat_cols() ~ "Mean (SE)")
由 reprex package (v1.0.0)
于 2021-03-27 创建
我正在尝试制作一个 table 输出我们通常通过 2-way anova 分析的大型研究的汇总统计数据,查看两个变量的主要影响以及交互作用。
我想要一种快速 运行 统计数据的方法,并以易于阅读的格式输出它们,如果格式更好,那就更好了。
我已经能够获得 2-way anova 输出,而且我还使用了 gtsummary 包和 tbl_summary
来制作 table。但是,我不知道如何按 1 个以上的变量进行分组。我的解决方案是创建一个结合了两个自变量的新变量,只是为了将数据分成正确的组。
下面的可重现示例。
我想知道是否有一种方法可以像我一样使用均值 (sem) 输出制作 table,但得到我的 2 向方差分析的结果(也粘贴在下面)。在这个巨大的例子中,我想要一列用于“性”的主要影响的 P 值,下一列用于“登船”的 p 值主要影响,然后是交互的 p 值。
有什么想法吗?
library(titanic)
library(tidyverse)
library(gtsummary)
library(plotrix) #has a std.error function
##I really want to look at a 2-way anova, looking for the p-value for Sex, Embarked, and their interaction.
#This code just allows me to make a table with the 4 columns I want, but of course it now won't do the correct stats.
df <- titanic_train %>%
filter(Embarked != "C" & Embarked != "") %>%
mutate(grp = paste(Sex, Embarked)) #add a new column that combines Sex & Pclass
#code to make my table
table1 <- df %>%
select(grp, Age, Fare, Survived) %>%
tbl_summary(
by = grp, ##can't figure out a way to put 2 variables here (Sex & Embarked)
missing = "ifany",
statistic = all_continuous() ~ "{mean} ({std.error})",
digits = all_continuous() ~ 1) %>% #this puts 1 decimal place for all values
modify_header(stat_by = md("**{level}**<br>N = {n}")) %>%
bold_labels() %>%
modify_spanning_header(all_stat_cols() ~ "**These are the Columns I Want**") %>%
add_p(test = everything() ~ "aov", ##This is a 1-way ANOVA, but I need 2 variables
)
table1
#these are the p-values I want in my table:
two_way_anova_age <- aov(Age ~ Sex * Embarked, data = df)
summary(two_way_anova_age)
two_way_anova_fare <- aov(Fare ~ Sex * Embarked, data = df)
summary(two_way_anova_fare)
two_way_anova_surv <- aov(Survived ~ Sex * Embarked, data = df)
summary(two_way_anova_surv)
以下是如何将结果合并到 gtsummary table。
library(gtsummary)
library(titanic)
library(tidyverse)
library(plotrix) #has a std.error function
packageVersion("gtsummary")
#> [1] '1.4.0'
# create smaller version of the dataset
df <-
titanic_train %>%
select(Sex, Embarked, Age, Fare) %>%
filter(Embarked != "") # deleting empty Embarked status
# first, write a little function to get the 2-way ANOVA p-values in a table
# function to get 2-way ANOVA p-values in tibble
twoway_p <- function(variable) {
paste(variable, "~ Sex * Embarked") %>%
as.formula() %>%
aov(data = df) %>%
broom::tidy() %>%
select(term, p.value) %>%
filter(complete.cases(.)) %>%
pivot_wider(names_from = term, values_from = p.value) %>%
mutate(
variable = .env$variable,
row_type = "label"
)
}
# add all results to a single table (will be merged with gtsummary table in next step)
twoway_results <-
bind_rows(
twoway_p("Age"),
twoway_p("Fare")
)
twoway_results
#> # A tibble: 2 x 5
#> Sex Embarked `Sex:Embarked` variable row_type
#> <dbl> <dbl> <dbl> <chr> <chr>
#> 1 0.00823 3.97e- 1 0.611 Age label
#> 2 0.0000000191 4.27e-16 0.0958 Fare label
tbl <-
# first build a stratified `tbl_summary()` table to get summary stats by two variables
df %>%
tbl_strata(
strata = Sex,
.tbl_fun =
~.x %>%
tbl_summary(
by = Embarked,
missing = "no",
statistic = all_continuous() ~ "{mean} ({std.error})",
digits = everything() ~ 1
) %>%
modify_header(all_stat_cols() ~ "**{level}**")
) %>%
# merge the 2way ANOVA results into tbl_summary table
modify_table_body(
~.x %>%
left_join(
twoway_results,
by = c("variable", "row_type")
)
) %>%
# by default the new columns are hidden, add a header to unhide them
modify_header(list(
Sex ~ "**Sex**",
Embarked ~ "**Embarked**",
`Sex:Embarked` ~ "**Sex * Embarked**"
)) %>%
# adding spanning header to analysis results
modify_spanning_header(c(Sex, Embarked, `Sex:Embarked`) ~ "**Two-way ANOVA p-values**") %>%
# format the p-values with a pvalue formatting function
modify_fmt_fun(c(Sex, Embarked, `Sex:Embarked`) ~ style_pvalue) %>%
# update the footnote to be nicer looking
modify_footnote(all_stat_cols() ~ "Mean (SE)")
由 reprex package (v1.0.0)
于 2021-03-27 创建