Python 以列表作为搜索变量的正则表达式

Python RegEx with List as search variables

我有一个数据框,其列 email_adress_raw 每行包含多个电子邮件地址,我想创建一个新列,其中第一个电子邮件地址具有在长列表中列出的特定电子邮件结尾。

email_endings = ['email_end1.com','email_end2.com','email_end3.com',...]

我创建了以下函数,它已经在运行,但是由于列表很长并且一直在构建中,我想在代码或类似的东西中对列表进行迭代。我已经想到了一个循环,但不知怎么的我没能做到...

def email_address_new(s):
    try:
        r = re.search("([\w.-]+@"+email_endings[0]+"|[\w.-]+@"+email_endings[1]+"|[\w.-]+@"+email_endings[2]+")", s).group()
    except AttributeError:
        print(s)
        return None
    except TypeError:
        print(s)
        return None
    return r

udf_email_address_new= F.udf(email_address_new, StringType())

df = df.withColumn("email", udf_email_address_new(F.col("email_adress_raw")))

您可以使用 join 将列表中的电子邮件结尾组合为正则表达式模式:

email_endings = ['email_end1.com','email_end2.com','email_end3.com']

def email_address_new(s):
    try:
        pattern = "([\w.-]+@" + "|[\w.-]+@".join(email_endings) + ")"
        r = re.search(pattern, s).group()
    except AttributeError:
        print(s)
        return None
    except TypeError:
        print(s)
        return None
    return r

udf_email_address_new= F.udf(email_address_new, StringType())

df2 = df.withColumn("email", udf_email_address_new(F.col("email_adress_raw")))

但是您可能不需要为此目的使用 UDF。您可以只使用 regexp_extract,如果没有匹配,则用 null 替换空字符串(如果不匹配,regexp_extract returns 为空字符串)

import pyspark.sql.functions as F

email_endings = ['email_end1.com','email_end2.com','email_end3.com']
pattern = "([\w.-]+@" + "|[\w.-]+@".join(email_endings) + ")"

df2 = df.withColumn(
    "email", 
    F.when(
        F.regexp_extract(F.col("email_adress_raw"), pattern, 1) != "",
        F.regexp_extract(F.col("email_adress_raw"), pattern, 1)
    )
)