在匹配项中展开类型函数(如 destruct)

Unfold a type-function in a match (like destruct)

TL;DR

我想编写一个固定点定义,在没有证明模式的情况下匹配依赖类型中的一个值。本质问题是 Coq 不会使用 match 来注意到依赖类型中的类型是等价的;我可以强制它进入验证模式,但我想知道如果没有它是否可以这样做。


我正在从事一个涉及大量矩阵运算的项目。矩阵可以是任意多维的(每个都是矩形的),所以我写了一个定义来计算矩阵的类型:

Require Import Coq.Unicode.Utf8.
Require Export Vector.
Import VectorNotations.
Require Import List.
Import ListNotations.

Fixpoint matrix (A: Type) (dims: list nat) :=
  match dims with
  | [] => A
  | head::tail => Vector.t (matrix A tail) head
  end.

出于“原因”,我需要对元素进行线性化,以便 select 线性化矩阵的第 n 个元素。我的第一次尝试是尝试 return 一维矩阵,但我 运行 与 List 的 fold_left 撞墙(不胜感激):

Definition product (dims: list nat) := List.fold_left Nat.mul dims 1.

Definition linearize {A: Type} {dims: list nat} (m: matrix A dims): matrix A [product dims].
Proof.
  generalize dependent m.
  induction dims.
  - intros.
    assert (product [] = 1) by reflexivity. rewrite H; clear H.
    exact (Vector.cons A m 0 (Vector.nil A)).
  - intros.
    (* why so hard? *)
    assert (product (a::dims) = a * product dims).
    { unfold product.
      assert (a::dims = [a] ++ dims) by reflexivity. rewrite H; clear H.
      rewrite List.fold_left_app.
      assert (List.fold_left Nat.mul [a] 1 = a). admit. }
Abort.

我认为转换为列表可能更容易,所以:

Fixpoint linearize' {A: Type} {dims: list nat} (m: matrix A dims): list A :=
  match dims with
  | [] => []
  | h::t => Vector.fold_left
            (@app A)
            []
            (Vector.map linearize' (m: Vector.t (matrix (list A) t) h))
  end.

但是 Coq 抱怨:

In environment
linearize' : ∀ (A : Type) (dims : list nat), matrix A dims → list A
A : Type
dims : list nat
m : matrix A dims
h : nat
t : list nat
The term "m" has type "matrix A dims" while it is expected to have type
 "Vector.t (matrix (list A) t) h".

我能够使用“证明风格”来编写定义,但令我困惑的是我无法让 Coq 接受本质上相同的定点!

Definition linearize {A: Type} {dims: list nat} (m: matrix A dims): list A.
Proof.
  induction dims.
  - (* unfold matrix in m. *) (* exact [m]. *) apply [m].
  - simpl in m.
    (* exact (Vector.fold_left (@List.app A) [] (Vector.map IHdims m)). *)
    apply (Vector.map IHdims) in m.
    apply (Vector.fold_left (@List.app A) [] m).
Defined.

似乎如果我能让 Coq 破坏 mdims 的类型,就像在归纳法中发生的那样,我会很高兴去……这里是 Print linearize.

linearize = 
λ (A : Type) (dims : list nat) (m : matrix A dims),
  list_rect (λ dims0 : list nat, matrix A dims0 → list A)
    (λ m0 : matrix A [], [m0])
    (λ (a : nat) (dims0 : list nat) (IHdims : matrix A dims0 → list A) 
       (m0 : matrix A (a :: dims0)),
       let m1 := Vector.map IHdims m0 in Vector.fold_left (app (A:=A)) [] m1)
    dims m
     : ∀ (A : Type) (dims : list nat), matrix A dims → list A

Arguments linearize {A}%type_scope {dims}%list_scope _

这是在 Coq 中使用依赖类型的主要难题之一。解决办法是重写linearize,使其returns匹配后成为一个函数:

Require Import Coq.Unicode.Utf8.
Require Export Vector.
Import VectorNotations.
Require Import List.
Import ListNotations.

Fixpoint matrix (A: Type) (dims: list nat) :=
  match dims with
  | [] => A
  | head::tail => Vector.t (matrix A tail) head
  end.

Fixpoint linearize {A: Type} {dims: list nat} : matrix A dims -> list A :=
  match dims with
  | [] => fun _ => []
  | dim :: dims => fun mat =>
    let res := Vector.map (@linearize _ dims) mat in
    Vector.fold_left (@app _) [] res
  end.

这个技巧被称为护航模式;您可以在这里找到更多相关信息:http://adam.chlipala.net/cpdt/html/MoreDep.html .

我的第一反应是“List.fold_left,他会过得很糟糕。”

这里有一个使用 List.fold_right 的解决方案。

Definition product (dims: list nat) := List.fold_right Nat.mul 1 dims.

Fixpoint concat {A} {n m : nat} (v : Vector.t (Vector.t A m) n) : Vector.t A (n * m) :=
  match v with
  | []%vector => []%vector
  | (x :: xs)%vector => append x (concat xs)
  end. 

Fixpoint linearize {A: Type} {dims: list nat} : matrix A dims -> matrix A [product dims] :=
  match dims with
  | [] => fun a => (a :: [])%vector
  | head :: tail => fun a => concat (Vector.map (linearize (dims := tail)) a)
  end.

fold_left 的问题在于,在非空情况下,它展开为立即递归调用,这为依赖类型的编程隐藏了太多信息。一个用例可能是定义尾递归函数,但这在这里不适用。

使用 fold_right,每当您在 dims 上进行模式匹配时,cons 情况就会暴露一个 Nat.mul,它允许使用 concat : Vector.t (Vector.t A m) n -> Vector.t A (n * m)