如何使用 backtrader 回测投资组合组合?

How to backtest portfolio compositions using backtrader?

我有一个 csv 文件 / pandas dataframe 看起来像这样。它包含根据我自己的计算每天重新平衡的投资组合的各种投资组合组合。

date        asset   percentage
4-Jan-21    AAPL    12.00%
4-Jan-21    TSM     1.00%
4-Jan-21    IBM     31.00%
4-Jan-21    KO      15.00%
4-Jan-21    AMD     41.00%
5-Jan-21    DELL    23.00%
5-Jan-21    TSM     12.20%  
5-Jan-21    IBM     15.24%  
5-Jan-21    KO      1.50%   
5-Jan-21    NKE     7.50%   
5-Jan-21    TSLA    9.50%   
5-Jan-21    CSCO    3.30%   
5-Jan-21    JPM     27.76%  
6-Jan-21    AMD     45% 
6-Jan-21    BA      0.50%   
6-Jan-21    ORCL    54.50%  
7-Jan-21    AAPL    50.00%  
7-Jan-21    KO      50.00%  
...

我想测试一个包含 12 个资产组合的策略。

AAPL,TSM,IBM,KO,AMD,DELL,NKE,TSLA,CSCO,JPM,BA,ORCL

那么假设在 2021 年 1 月 4 日,投资组合的构成为苹果 12%,TSM 1% 等。我希望能够查看价格并知道我应该持有多少。

第二天,即 2021 年 1 月 5 日,戴尔的成分将变为 23%.. 等等,如果该股票不在此列表中,则意味着当天为 0%。

我一直将 backtrader 视为一个回测平台,但是,我在回购协议中看到的代码主要展示了如何使用指标进行操作,例如 SMA 交叉、RSI...

我的问题是:是否可以根据我拥有的这些组合创建和测试投资组合,以便我可以检查此策略的 return?它会检查这个框架,并知道在特定日期买入或卖出多少股票。

所以我买入或卖出的股票范围是 AAPL,TSM,IBM,KO,AMD,DELL,NKE,TSLA,CSCO,JPM,BA,ORCL

所以在 21 年 1 月 4 日,它可能看起来像,

dictionary['4Jan2021'] = {'AAPL':0.12,
                          'TSM':0.01,
                          'IBM':0.31,
                          'KO':0.15,
                          'AMD':0.41,}

21 年 1 月 5 日看起来像,

dictionary['5Jan2021'] = {'DELL':0.23,
                          'TSM':0.122,
                          'IBM':0.1524,
                          'KO':0.015,
                          'NKE':0.075,
                          'TSLA':0.095,
                          'CSCO':0.033,
                          'JPM':0.2776,}    

如果没有代码,则表示其为 0%。 投资组合构成每天都需要改变。

您要做的第一件事是用您的数据加载您的目标。我喜欢 当我将目标添加到 backtrader 时,我亲自将目标附加到数据线上。

tickers = {"FB": 0.25, "MSFT": 0.4, "TSLA": 0.35}

for ticker, target in tickers.items():
    data = bt.feeds.YahooFinanceData(
        dataname=ticker,
        timeframe=bt.TimeFrame.Days,
        fromdate=datetime.datetime(2019, 1, 1),
        todate=datetime.datetime(2020, 12, 31),
        reverse=False,
    )
    data.target = target
    cerebro.adddata(data, name=ticker)

接下来您将要遍历每个数据,并确定当前分配。如果当前分配距离所需分配(阈值)太远,您将交易所有数据。

注意有一个缓冲区变量。这将减少用于计算交易单位的账户的总价值。这有助于避免边距。

您将使用字典来跟踪此信息。

def next(self):
    track_trades = dict()
    total_value = self.broker.get_value() * (1 - self.p.buffer)

    for d in self.datas:
        track_trades[d] = dict()
        value = self.broker.get_value(datas=[d])
        allocation = value / total_value
        units_to_trade = (d.target - allocation) * total_value / d.close[0]
        track_trades[d]["units"] = units_to_trade

        # Can check to make sure there is enough distance away from ideal to trade.
        track_trades[d]["threshold"] = abs(d.target - allocation) > self.p.threshold

检查所有阈值以确定是否交易。如果任何数据需要交易,那么所有数据都需要交易。

rebalance = False
for values in track_trades.values():
    if values['threshold']:
        rebalance = True

if not rebalance:
    return

最后,执行您的交易。始终先卖出以在账户中产生现金并避免利润。

# Sell shares first
for d, value in track_trades.items():
    if value["units"] < 0:
        self.sell(d, size=value["units"])

# Buy shares second
for d, value in track_trades.items():
    if value["units"] > 0:
        self.buy(d, size=value["units"])

这里是所有的代码供您参考。

import datetime
import backtrader as bt

class Strategy(bt.Strategy):

    params = (
        ("buffer", 0.05),
        ("threshold", 0.025),
    )

    def log(self, txt, dt=None):
        """ Logging function fot this strategy"""
        dt = dt or self.data.datetime[0]
        if isinstance(dt, float):
            dt = bt.num2date(dt)
        print("%s, %s" % (dt.date(), txt))

    def print_signal(self):
        self.log(
            f"o {self.datas[0].open[0]:7.2f} "
            f"h {self.datas[0].high[0]:7.2f} "
            f"l {self.datas[0].low[0]:7.2f} "
            f"c {self.datas[0].close[0]:7.2f} "
            f"v {self.datas[0].volume[0]:7.0f} "
        )

    def notify_order(self, order):
        """ Triggered upon changes to orders. """
        # Suppress notification if it is just a submitted order.
        if order.status == order.Submitted:
            return

        # Print out the date, security name, order number and status.
        type = "Buy" if order.isbuy() else "Sell"
        self.log(
            f"{order.data._name:<6} Order: {order.ref:3d} "
            f"Type: {type:<5}\tStatus"
            f" {order.getstatusname():<8} \t"
            f"Size: {order.created.size:9.4f} Price: {order.created.price:9.4f} "
            f"Position: {self.getposition(order.data).size:5.2f}"
        )
        if order.status == order.Margin:
            return

        # Check if an order has been completed
        if order.status in [order.Completed]:
            self.log(
                f"{order.data._name:<6} {('BUY' if order.isbuy() else 'SELL'):<5} "
                # f"EXECUTED for: {dn} "
                f"Price: {order.executed.price:6.2f} "
                f"Cost: {order.executed.value:6.2f} "
                f"Comm: {order.executed.comm:4.2f} "
                f"Size: {order.created.size:9.4f} "
            )

    def notify_trade(self, trade):
        """Provides notification of closed trades."""
        if trade.isclosed:
            self.log(
                "{} Closed: PnL Gross {}, Net {},".format(
                    trade.data._name,
                    round(trade.pnl, 2),
                    round(trade.pnlcomm, 1),
                )
            )

    def next(self):
        track_trades = dict()
        total_value = self.broker.get_value() * (1 - self.p.buffer)

        for d in self.datas:
            track_trades[d] = dict()
            value = self.broker.get_value(datas=[d])
            allocation = value / total_value
            units_to_trade = (d.target - allocation) * total_value / d.close[0]
            track_trades[d]["units"] = units_to_trade

            # Can check to make sure there is enough distance away from ideal to trade.
            track_trades[d]["threshold"] = abs(d.target - allocation) > self.p.threshold

        rebalance = False
        for values in track_trades.values():
            if values['threshold']:
                rebalance = True

        if not rebalance:
            return

        # Sell shares first
        for d, value in track_trades.items():
            if value["units"] < 0:
                self.sell(d, size=value["units"])

        # Buy shares second
        for d, value in track_trades.items():
            if value["units"] > 0:
                self.buy(d, size=value["units"])


if __name__ == "__main__":

    cerebro = bt.Cerebro()

    tickers = {"FB": 0.25, "MSFT": 0.4, "TSLA": 0.35}

    for ticker, target in tickers.items():
        data = bt.feeds.YahooFinanceData(
            dataname=ticker,
            timeframe=bt.TimeFrame.Days,
            fromdate=datetime.datetime(2019, 1, 1),
            todate=datetime.datetime(2020, 12, 31),
            reverse=False,
        )
        data.target = target
        cerebro.adddata(data, name=ticker)

    cerebro.addstrategy(Strategy)

    # Execute
    cerebro.run()

####################################
#############编辑###############
####################################
还有一个额外的要求,即每天为每只证券增加可变分配。下面的代码实现了这一点。

import datetime
import backtrader as bt


class Strategy(bt.Strategy):

    params = (
        ("buffer", 0.05),
        ("threshold", 0.025),
    )

    def log(self, txt, dt=None):
        """ Logging function fot this strategy"""
        dt = dt or self.data.datetime[0]
        if isinstance(dt, float):
            dt = bt.num2date(dt)
        print("%s, %s" % (dt.date(), txt))

    def print_signal(self):
        self.log(
            f"o {self.datas[0].open[0]:7.2f} "
            f"h {self.datas[0].high[0]:7.2f} "
            f"l {self.datas[0].low[0]:7.2f} "
            f"c {self.datas[0].close[0]:7.2f} "
            f"v {self.datas[0].volume[0]:7.0f} "
        )

    def notify_order(self, order):
        """ Triggered upon changes to orders. """
        # Suppress notification if it is just a submitted order.
        if order.status == order.Submitted:
            return

        # Print out the date, security name, order number and status.
        type = "Buy" if order.isbuy() else "Sell"
        self.log(
            f"{order.data._name:<6} Order: {order.ref:3d} "
            f"Type: {type:<5}\tStatus"
            f" {order.getstatusname():<8} \t"
            f"Size: {order.created.size:9.4f} Price: {order.created.price:9.4f} "
            f"Position: {self.getposition(order.data).size:5.2f}"
        )
        if order.status == order.Margin:
            return

        # Check if an order has been completed
        if order.status in [order.Completed]:
            self.log(
                f"{order.data._name:<6} {('BUY' if order.isbuy() else 'SELL'):<5} "
                # f"EXECUTED for: {dn} "
                f"Price: {order.executed.price:6.2f} "
                f"Cost: {order.executed.value:6.2f} "
                f"Comm: {order.executed.comm:4.2f} "
                f"Size: {order.created.size:9.4f} "
            )

    def notify_trade(self, trade):
        """Provides notification of closed trades."""
        if trade.isclosed:
            self.log(
                "{} Closed: PnL Gross {}, Net {},".format(
                    trade.data._name,
                    round(trade.pnl, 2),
                    round(trade.pnlcomm, 1),
                )
            )

    def __init__(self):
        for d in self.datas:
            d.target = {
                datetime.datetime.strptime(date, "%d-%b-%y").date(): allocation
                for date, allocation in d.target.items()
            }

    def next(self):
        date = self.data.datetime.date()
        track_trades = dict()
        total_value = self.broker.get_value() * (1 - self.p.buffer)

        for d in self.datas:
            if date not in d.target:
                if self.getposition(d):
                    self.close(d)
                continue
            target_allocation = d.target[date]
            track_trades[d] = dict()
            value = self.broker.get_value(datas=[d])
            current_allocation = value / total_value
            net_allocation = target_allocation - current_allocation
            units_to_trade = (
                (net_allocation) * total_value / d.close[0]
            )
            track_trades[d]["units"] = units_to_trade

            # Can check to make sure there is enough distance away from ideal to trade.
            track_trades[d]["threshold"] = abs(net_allocation) > self.p.threshold

        rebalance = False
        for values in track_trades.values():
            if values["threshold"]:
                rebalance = True

        if not rebalance:
            return

        # Sell shares first
        for d, value in track_trades.items():
            if value["units"] < 0:
                self.sell(d, size=value["units"])

        # Buy shares second
        for d, value in track_trades.items():
            if value["units"] > 0:
                self.buy(d, size=value["units"])


if __name__ == "__main__":

    cerebro = bt.Cerebro()

    allocations = [
        ("AAPL", "4-Jan-21", 0.300),
        ("TSM", "4-Jan-21", 0.200),
        ("IBM", "4-Jan-21", 0.300),
        ("KO", "4-Jan-21", 0.2000),
        ("AMD", "4-Jan-21", 0.1000),
        ("DELL", "5-Jan-21", 0.200),
        ("TSM", "5-Jan-21", 0.20),
        ("IBM", "5-Jan-21", 0.1),
        ("KO", "5-Jan-21", 0.1),
        ("NKE", "5-Jan-21", 0.15),
        ("TSLA", "5-Jan-21", 0.10),
        ("CSCO", "5-Jan-21", 0.050),
        ("JPM", "5-Jan-21", 0.1),
        ("AMD", "6-Jan-21", 0.25),
        ("BA", "6-Jan-21", 0.25),
        ("ORCL", "6-Jan-21", 0.50),
        ("AAPL", "7-Jan-21", 0.5000),
        ("KO", "7-Jan-21", 0.5000),
    ]
    ticker_names = list(set([alls[0] for alls in allocations]))
    targets = {ticker: {} for ticker in ticker_names}
    for all in allocations:
        targets[all[0]].update({all[1]: all[2]})

    for ticker, target in targets.items():
        data = bt.feeds.YahooFinanceData(
            dataname=ticker,
            timeframe=bt.TimeFrame.Days,
            fromdate=datetime.datetime(2020, 12, 21),
            todate=datetime.datetime(2021, 1, 8),
            reverse=False,
        )
        data.target = target
        cerebro.adddata(data, name=ticker)

    cerebro.addstrategy(Strategy)
    cerebro.broker.setcash(1000000)

    # Execute
    cerebro.run()