时间过滤 Pyspark 数据框中的结构列

Time filtering a struct column in Pyspark dataframe

我有一个数据框,其中包含包含日期和值的结构的列,因此模式看起来像

root
 |-- col1: struct (nullable = true)
 |    |-- dates: array (nullable = true)
 |    |    |-- element: timestamp (containsNull = true)
 |    |-- values: array (nullable = true)
 |    |    |-- element: double (containsNull = true)
 |-- col2: struct (nullable = true)
 |    |-- dates: array (nullable = true)
 |    |    |-- element: timestamp (containsNull = true)
 |    |-- values: array (nullable = true)
 |    |    |-- element: double (containsNull = true)
 |-- id: string (nullable = true)

给定一些时间索引:

time_index = datetime.datetime(2015, 12, 12, 4, 45)

及前后天数:

min_diff = -1 and max_diff = 2

我想要新列 col1_filtcol2_filt,其结构与 return 属于 [=17= 定义的 window 内的日期相同] 和 min_diffmax_diff 以及相应的值。如果 none 的日期或值落在 window 范围内,我希望它 return None.

下面是要使用的 DataFrame 示例。

示例数据帧:

example_input = [
    Row(
        id = "A", 
        col1 = Row(
            dates = [datetime.datetime(2015, 12, 11, 5, 28), datetime.datetime(2015, 12, 12, 4, 45), datetime.datetime(2015, 12, 13, 5, 9)], 
            values = [17.7, 19.1, 19.1]
        ),
        col2 = Row(
            dates = [datetime.datetime(2015, 12, 13, 4, 48), datetime.datetime(2015, 12, 15, 5, 8)], 
            values = [19.1, 19.1]
        )
    ),
    Row(
        id = "B", 
        col1 = Row(
            dates = [datetime.datetime(2017, 1, 13, 5, 9)], 
            values = [19.1]
        ),
        col2 = Row(
            dates = [datetime.datetime(2017, 1, 12, 2, 48), datetime.datetime(2017, 1, 15, 5, 8)], 
            values = [19.5, 29.1]
        )
    ),
]

df = spark.createDataFrame(example_input)

显示 df:

+-------------------------------------------------------------------------------------+----------------------------------------------------------+---+
|col1                                                                                 |col2                                                      |id |
+-------------------------------------------------------------------------------------+----------------------------------------------------------+---+
|[[2015-12-11 05:28:00, 2015-12-12 04:45:00, 2015-12-13 05:09:00], [17.7, 19.1, 19.1]]|[[2015-12-13 04:48:00, 2015-12-15 05:08:00], [19.1, 19.1]]|A  |
|[[2017-01-13 05:09:00], [19.1]]                                                      |[[2017-01-12 02:48:00, 2017-01-15 05:08:00], [19.5, 29.1]]|B  |
+-------------------------------------------------------------------------------------+----------------------------------------------------------+---+

我有一些代码将采用 Pyspark 行对象和 return 过滤后的 Pyspark 行对象,但我不确定如何将其设为 udf。

下面是一个使用 UDF 进行过滤的示例:

import datetime
import pyspark.sql.functions as F
from pyspark.sql import Row

time_index = datetime.datetime(2015, 12, 12, 4, 45)
min_diff = -1
max_diff = 2

def time_filter(r):
    ret = list(zip(*[
        x for x in list(zip(r['dates'], r['values'])) 
        if x[0] > time_index + datetime.timedelta(days=min_diff) 
        and x[0] < time_index + datetime.timedelta(days=max_diff)
    ]))
    return Row(dates=ret[0], values=ret[1]) if len(ret) != 0 else None

time_filter_udf = F.udf(time_filter, 'struct<dates:array<timestamp>,values:array<double>>')

df2 = df.withColumn('col1_filt', time_filter_udf('col1')).withColumn('col2_filt', time_filter_udf('col2'))

df2.show(truncate=False)
+-------------------------------------------------------------------------------------+----------------------------------------------------------+---+-------------------------------------------------------------------------------------+-------------------------------+
|col1                                                                                 |col2                                                      |id |col1_filt                                                                            |col2_filt                      |
+-------------------------------------------------------------------------------------+----------------------------------------------------------+---+-------------------------------------------------------------------------------------+-------------------------------+
|[[2015-12-11 05:28:00, 2015-12-12 04:45:00, 2015-12-13 05:09:00], [17.7, 19.1, 19.1]]|[[2015-12-13 04:48:00, 2015-12-15 05:08:00], [19.1, 19.1]]|A  |[[2015-12-11 05:28:00, 2015-12-12 04:45:00, 2015-12-13 05:09:00], [17.7, 19.1, 19.1]]|[[2015-12-13 04:48:00], [19.1]]|
|[[2017-01-13 05:09:00], [19.1]]                                                      |[[2017-01-12 02:48:00, 2017-01-15 05:08:00], [19.5, 29.1]]|B  |null                                                                                 |null                           |
+-------------------------------------------------------------------------------------+----------------------------------------------------------+---+-------------------------------------------------------------------------------------+-------------------------------+