使用 squarify.plot 在标签上显示多列值
Show multiple columns values on labels with squarify.plot
我有一个数据框,我想用 squarify
绘制树图。我想通过编辑 labels
参数在图表上显示 country_name
和 counts
,但它似乎只取一个值。
示例数据
import squarify
import pandas as pd
from matplotlib import pyplot as plt
d = {'country_name':['USA', 'UK', 'Germany'], 'counts':[100, 200, 300]}
dd = pd.DataFrame(data=d)
fig = plt.gcf()
ax = fig.add_subplot()
fig.set_size_inches(16, 4.5)
norm = matplotlib.colors.Normalize(vmin=min(dd.counts), vmax=max(dd.counts))
colors = [matplotlib.cm.Blues(norm(value)) for value in dd.counts]
squarify.plot(label=dd.country_name, sizes=dd.counts, alpha=.7, color=colors)
plt.axis('off')
plt.show()
预期输出将在图表上显示 counts
和 country_name
。
您可以通过同时遍历两列并组合字符串来创建标签列表。例如:
import squarify
import pandas as pd
from matplotlib import pyplot as plt
import matplotlib
d = {'country_name': ['USA', 'UK', 'Germany'], 'counts': [100, 200, 300]}
dd = pd.DataFrame(data=d)
labels = [f'{country}\n{count}' for country, count in zip(dd.country_name, dd.counts)]
fig = plt.gcf()
ax = fig.add_subplot()
fig.set_size_inches(16, 4.5)
norm = matplotlib.colors.Normalize(vmin=min(dd.counts), vmax=max(dd.counts))
colors = [matplotlib.cm.Blues(norm(value)) for value in dd.counts]
squarify.plot(label=labels, sizes=dd.counts, alpha=.7, color=colors)
plt.axis('off')
plt.show()
我有一个数据框,我想用 squarify
绘制树图。我想通过编辑 labels
参数在图表上显示 country_name
和 counts
,但它似乎只取一个值。
示例数据
import squarify
import pandas as pd
from matplotlib import pyplot as plt
d = {'country_name':['USA', 'UK', 'Germany'], 'counts':[100, 200, 300]}
dd = pd.DataFrame(data=d)
fig = plt.gcf()
ax = fig.add_subplot()
fig.set_size_inches(16, 4.5)
norm = matplotlib.colors.Normalize(vmin=min(dd.counts), vmax=max(dd.counts))
colors = [matplotlib.cm.Blues(norm(value)) for value in dd.counts]
squarify.plot(label=dd.country_name, sizes=dd.counts, alpha=.7, color=colors)
plt.axis('off')
plt.show()
预期输出将在图表上显示 counts
和 country_name
。
您可以通过同时遍历两列并组合字符串来创建标签列表。例如:
import squarify
import pandas as pd
from matplotlib import pyplot as plt
import matplotlib
d = {'country_name': ['USA', 'UK', 'Germany'], 'counts': [100, 200, 300]}
dd = pd.DataFrame(data=d)
labels = [f'{country}\n{count}' for country, count in zip(dd.country_name, dd.counts)]
fig = plt.gcf()
ax = fig.add_subplot()
fig.set_size_inches(16, 4.5)
norm = matplotlib.colors.Normalize(vmin=min(dd.counts), vmax=max(dd.counts))
colors = [matplotlib.cm.Blues(norm(value)) for value in dd.counts]
squarify.plot(label=labels, sizes=dd.counts, alpha=.7, color=colors)
plt.axis('off')
plt.show()