TypeError PYOMO:基于 pandas 数据帧定义约束

TypeError PYOMO: Defining constraints based on pandas dataframe

对于优化问题,我试图在 PYOMO 中定义约束,其中约束表达式包含来自 pandas DataFrame 的一些特定值。

我会尽量简明扼要地解释我的问题。

以下是进口商品。

from pyomo.environ import *
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
from pyomo.opt import SolverFactory

model = ConcreteModel()

以下是决策变量。

model.d1 = Var(bounds=(0.8,1.0), initialize = 0.9)
model.t1 = Var(bounds=(0.1,0.3))

objective函数如下:

model.Total_weight = Objective(expr=  model.t1*model.d1, sense= minimize )

为了制定约束表达式,我使用了 DataFrame 中的一些值。

DataFrame 看起来像这样:

r1 = [50.05,60.0,70]
r2 = [100,150,200]

df = pd.DataFrame([r1,r2])

        0      1    2
0   50.05   60.0   70
1  100.00  150.0  200

当前想法:

我正在将 df 中的一些值分配给变量,以便在约束表达式中使用(如下所示)。

v1 = df.iloc[0, 1]
v2 = df.iloc[1,1]

v1 和 v2 的唯一目的是向约束表达式输入值。与优化模型无关

model.C1 = Constraint(expr =  v1 +  v2 *model.d1 <= 2.1)

但是我在执行这个idea的时候出现了如下错误

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-9-a9a7f2887bcb> in <module>
----> 1 model.C1 = Constraint(expr = v1 +  v2 *model.d1)

TypeError: unsupported operand type(s) for *: 'float' and 'NoneType'

据我了解,python 将 v1 和 v2 视为 'float',将 model.d1 视为 'NoneType'。我试图通过将 initialize 添加到变量 model.d1 来 运行 模型。但似乎仍然 'NoneType'.

有人可以帮我解决这个问题吗?

非常感谢您。

PS: model.d1.display() 给出以下输出。

d1 : Size=1, Index=None
    Key  : Lower : Value : Upper : Fixed : Stale : Domain
    None :   0.8 :   0.9 :   1.0 : False : False :  Reals

所以您可能偶然发现了一个小错误,即当 pyomo 变量是单例时 pyomo 如何与 numpy 值交互......我不认为这是经常出现,因为在处理索引 pyomo 变量时问题不会暴露出来,这是迄今为止大多数情况。你的是非索引单例。

首先,让我们让您的模型正常工作。将来自 df 的值转换为浮点数,这很好用。

from pyomo.environ import *
#import numpy as np
import pandas as pd
import matplotlib.pyplot as plt 
#from pyomo.opt import SolverFactory

model = ConcreteModel()

model.d1 = Var(bounds=(0.8,1.0), domain=NonNegativeReals)
model.t1 = Var(bounds=(0.1,0.3), domain=NonNegativeReals)

r1 = [50.05,60.0,70]
r2 = [100,150,200]

df = pd.DataFrame([r1,r2])

v1 = float(df.iloc[0, 1])   # NOTE the float() conversion
v2 = float(df.iloc[1, 1])   # NOTE the float() conversion

model.C1 = Constraint(expr=v1 + v2 * model.d1 <= 2.1)

model.pprint()

疑似bug...

根据我的理解,这两个应该执行。我几乎从不处理单例变量(没有索引),所以这里可能还有其他事情要做。我会尝试将其作为错误提交给 pyomo 的人,看看会发生什么。

from pyomo.environ import *
import numpy as np

c = np.float64(1.5)  # a numpy float like what comes out of a pd dataframe...

model_1 = ConcreteModel()

model_1.x = Var()

# a simple expression
e = c * model_1.x     # FAILS!  TypeError: unsupported operand type(s) for *: 'float' and 'NoneType'


model_2 = ConcreteModel()

model_2.S = Set(initialize = [1,])   # indexing set with 1 member

model_2.x = Var(model_2.S)

# same expression
e2 = c * model_2.x[1]  # Works fine...