如何仅从 6 小时数据集立方体(虹膜)中绘制每小时的数据?
How to only plot data on the hour from a 6 hour dataset cube (iris)?
到目前为止,我绘制图表的代码如下所示:
iplt.plot(pressure_no1, color='black')
plt.xlabel('Time / hour of day')
plt.ylabel('Atmospheric pressure / kPa')
iplt.show()
这是一个6小时的立方体(虽然是二维的)数据集,有420个数据点。我只需要绘制数据点 hr=0, hr=1 hr=2, hr=3, hr=4, hr=5 和小时之间的 none。
像下面这样的东西可以工作吗?
pressure_no1_hrs = pressure_no1.coord('hour'==int).points
plt.plot(pressure_no1_hrs)
Image of graph with all data points and start of the time coordinates
Image of last lot of time coordinates
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
measures = np.random.normal(size=(360, ))
timepoints = np.arange(start=0, stop=360)
df = pd.DataFrame({'measure': measures, 'timepoint': timepoints})
is_hour = df.loc[:, 'timepoint'] % 60 == 0 # <- Only select full hour
plt.plot(df.loc[is_hour, 'measure'])
plt.xlabel("Time [min]")
plt.ylabel("Atmospheric pressure / kPa")
plt.show()
对于特定于 Iris 的解决方案,您可以使用 PartialDateTime:
import iris
import iris.quickplot as qplt
import numpy as np
import matplotlib.pyplot as plt
measures = np.random.normal(size=(360, ))
timepoints = np.arange(start=0, stop=360)
cube = iris.cube.Cube(measures, long_name='atmospheric_pressure', units='kPa')
time_coord = iris.coords.DimCoord(
timepoints, units='minutes since 2020-07-01 00:00', standard_name='time')
cube.add_dim_coord(time_coord, 0)
subcube = cube.extract(iris.Constraint(time=iris.time.PartialDateTime(minute=0)))
qplt.plot(cube, label='All data')
qplt.plot(subcube, label='Hourly data')
plt.legend()
plt.show()
到目前为止,我绘制图表的代码如下所示:
iplt.plot(pressure_no1, color='black')
plt.xlabel('Time / hour of day')
plt.ylabel('Atmospheric pressure / kPa')
iplt.show()
这是一个6小时的立方体(虽然是二维的)数据集,有420个数据点。我只需要绘制数据点 hr=0, hr=1 hr=2, hr=3, hr=4, hr=5 和小时之间的 none。
像下面这样的东西可以工作吗?
pressure_no1_hrs = pressure_no1.coord('hour'==int).points
plt.plot(pressure_no1_hrs)
Image of graph with all data points and start of the time coordinates Image of last lot of time coordinates
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
measures = np.random.normal(size=(360, ))
timepoints = np.arange(start=0, stop=360)
df = pd.DataFrame({'measure': measures, 'timepoint': timepoints})
is_hour = df.loc[:, 'timepoint'] % 60 == 0 # <- Only select full hour
plt.plot(df.loc[is_hour, 'measure'])
plt.xlabel("Time [min]")
plt.ylabel("Atmospheric pressure / kPa")
plt.show()
对于特定于 Iris 的解决方案,您可以使用 PartialDateTime:
import iris
import iris.quickplot as qplt
import numpy as np
import matplotlib.pyplot as plt
measures = np.random.normal(size=(360, ))
timepoints = np.arange(start=0, stop=360)
cube = iris.cube.Cube(measures, long_name='atmospheric_pressure', units='kPa')
time_coord = iris.coords.DimCoord(
timepoints, units='minutes since 2020-07-01 00:00', standard_name='time')
cube.add_dim_coord(time_coord, 0)
subcube = cube.extract(iris.Constraint(time=iris.time.PartialDateTime(minute=0)))
qplt.plot(cube, label='All data')
qplt.plot(subcube, label='Hourly data')
plt.legend()
plt.show()