CS 231n:Softmax 实现错误的梯度
CS 231n: Gradient of Softmax Implementation Error
我试图解决 CS 231n 作业 1,但在实现 softmax 梯度时遇到了问题。请注意,我没有参加该课程,只是出于学习目的。我最初手动计算了梯度,对我来说似乎很好,我实现了如下梯度,但是当代码是 运行 反对数值梯度时,结果不匹配,我想了解我哪里出错了在此实施中,如果有人可以帮助我清楚地说明这一点。
谢谢。
代码:
def softmax_loss_naive(W, X, y, reg):
"""
Softmax loss function, naive implementation (with loops)
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
#############################################################################
# TODO: Compute the softmax loss and its gradient using explicit loops. #
# Store the loss in loss and the gradient in dW. If you are not careful #
# here, it is easy to run into numeric instability. Don't forget the #
# regularization! #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
num_train = X.shape[0]
for i in range(num_train):
score = X[i].dot(W)
correct = y[i]
denom_sum = 0.0
num = 0.0
for j,s in enumerate(score):
denom_sum += np.exp(s)
if j == correct:
num = np.exp(s)
else:
dW[:,j] = X[i].T * np.exp(s)
loss += -np.log(num / denom_sum)
dW[:, correct] += -X[i].T * ( (denom_sum - num) )
dW = dW / (denom_sum)
loss = loss / (num_train)
dW /= num_train
loss += reg * np.sum(W * W)
dW += reg * 2 * W
return loss, dW
我自己想出了答案。
行:
dW = dW / (denom_sum)
是一个错误。
另外,修改了代码以使其工作。
denom_sum = np.sum(np.exp(score))
for j,s in enumerate(score):
if j == correct:
num = np.exp(s)
dW[:, correct] += -X[i].T * ((denom_sum - num)/ (denom_sum))
else:
dW[:,j] += X[i].T * (np.exp(s) / denom_sum)
loss += -np.log(num / denom_sum)
loss = loss / (num_train)
dW /= num_train
loss += reg * np.sum(W * W)
dW += reg * 2 * W
我早些时候将所有元素除以 denom_sum,而我应该只按列划分。
我试图解决 CS 231n 作业 1,但在实现 softmax 梯度时遇到了问题。请注意,我没有参加该课程,只是出于学习目的。我最初手动计算了梯度,对我来说似乎很好,我实现了如下梯度,但是当代码是 运行 反对数值梯度时,结果不匹配,我想了解我哪里出错了在此实施中,如果有人可以帮助我清楚地说明这一点。
谢谢。
代码:
def softmax_loss_naive(W, X, y, reg):
"""
Softmax loss function, naive implementation (with loops)
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
# Initialize the loss and gradient to zero.
loss = 0.0
dW = np.zeros_like(W)
#############################################################################
# TODO: Compute the softmax loss and its gradient using explicit loops. #
# Store the loss in loss and the gradient in dW. If you are not careful #
# here, it is easy to run into numeric instability. Don't forget the #
# regularization! #
#############################################################################
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
num_train = X.shape[0]
for i in range(num_train):
score = X[i].dot(W)
correct = y[i]
denom_sum = 0.0
num = 0.0
for j,s in enumerate(score):
denom_sum += np.exp(s)
if j == correct:
num = np.exp(s)
else:
dW[:,j] = X[i].T * np.exp(s)
loss += -np.log(num / denom_sum)
dW[:, correct] += -X[i].T * ( (denom_sum - num) )
dW = dW / (denom_sum)
loss = loss / (num_train)
dW /= num_train
loss += reg * np.sum(W * W)
dW += reg * 2 * W
return loss, dW
我自己想出了答案。
行:
dW = dW / (denom_sum)
是一个错误。 另外,修改了代码以使其工作。
denom_sum = np.sum(np.exp(score))
for j,s in enumerate(score):
if j == correct:
num = np.exp(s)
dW[:, correct] += -X[i].T * ((denom_sum - num)/ (denom_sum))
else:
dW[:,j] += X[i].T * (np.exp(s) / denom_sum)
loss += -np.log(num / denom_sum)
loss = loss / (num_train)
dW /= num_train
loss += reg * np.sum(W * W)
dW += reg * 2 * W
我早些时候将所有元素除以 denom_sum,而我应该只按列划分。