在图像批次中打乱补丁
Shuffle patches in image batch
我正在尝试创建一个 transform
来批量打乱每个图像的补丁。
我打算以与 torchvision
:
中其余转换相同的方式使用它
trans = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
ShufflePatches(patch_size=(16,16)) # our new transform
])
更具体地说,输入是一个 BxCxHxW
张量。我想将批处理中的每个图像拆分为大小为 patch_size 的非重叠块,将它们打乱,然后重新组合成单个图像。
给定图像(大小224x224
):
使用 ShufflePatches(patch_size=(112,112))
我想生成输出图像:
我认为解决方案与 torch.unfold
和 torch.fold
有关,但未能进一步解决。
如有任何帮助,我们将不胜感激!
确实 在这种情况下似乎很合适。
import torch
import torch.nn.functional as nnf
class ShufflePatches(object):
def __init__(self, patch_size):
self.ps = patch_size
def __call__(self, x):
# divide the batch of images into non-overlapping patches
u = nnf.unfold(x, kernel_size=self.ps, stride=self.ps, padding=0)
# permute the patches of each image in the batch
pu = torch.cat([b_[:, torch.randperm(b_.shape[-1])][None,...] for b_ in u], dim=0)
# fold the permuted patches back together
f = nnf.fold(pu, x.shape[-2:], kernel_size=self.ps, stride=self.ps, padding=0)
return f
这是一个补丁大小为 16 的示例:
我正在尝试创建一个 transform
来批量打乱每个图像的补丁。
我打算以与 torchvision
:
trans = transforms.Compose([
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
ShufflePatches(patch_size=(16,16)) # our new transform
])
更具体地说,输入是一个 BxCxHxW
张量。我想将批处理中的每个图像拆分为大小为 patch_size 的非重叠块,将它们打乱,然后重新组合成单个图像。
给定图像(大小224x224
):
使用 ShufflePatches(patch_size=(112,112))
我想生成输出图像:
我认为解决方案与 torch.unfold
和 torch.fold
有关,但未能进一步解决。
如有任何帮助,我们将不胜感激!
确实
import torch
import torch.nn.functional as nnf
class ShufflePatches(object):
def __init__(self, patch_size):
self.ps = patch_size
def __call__(self, x):
# divide the batch of images into non-overlapping patches
u = nnf.unfold(x, kernel_size=self.ps, stride=self.ps, padding=0)
# permute the patches of each image in the batch
pu = torch.cat([b_[:, torch.randperm(b_.shape[-1])][None,...] for b_ in u], dim=0)
# fold the permuted patches back together
f = nnf.fold(pu, x.shape[-2:], kernel_size=self.ps, stride=self.ps, padding=0)
return f
这是一个补丁大小为 16 的示例: