Google 自然语言预测示例
Googe Natural Language predict example
我是 python 的新手。已经训练了自定义 Google 自然语言模型并尝试执行 google.
提供的示例
import sys
import os
from google.api_core.client_options import ClientOptions
from google.cloud import automl
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="my_service_account.json"
def inline_text_payload(file_path):
with open(file_path, 'rb') as ff:
content = ff.read()
return {'text_snippet': {'content': content, 'mime_type': 'text/plain'} }
def get_prediction(file_path, model_name):
options = ClientOptions(api_endpoint='eu-automl.googleapis.com')
prediction_client = automl.PredictionServiceClient(client_options=options)
payload = inline_text_payload(file_path)
params = {}
request = prediction_client.predict(model_name, payload, params)
return request # waits until request is returned
if __name__ == '__main__':
file_path = sys.argv[1]
model_name = sys.argv[2]
print(get_prediction(file_path, model_name))
通过执行此代码,我收到错误消息:
Traceback (most recent call last):
File "predict.py", line 33, in <module>
print(get_prediction(file_path, model_name))
File "predict.py", line 26, in get_prediction
request = prediction_client.predict(model_name, payload, params)
TypeError: predict() takes from 1 to 2 positional arguments but 4 were given
我进行了多次搜索,但似乎找不到问题所在。如果有经验的人可以看看并指出正确的方向,我将不胜感激。
]更新]
不得不重新表述 prediction_client.predict
参数。工作代码:
import sys
from google.api_core.client_options import ClientOptions
from google.cloud import automl
import os
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="my_service_account.json"
def inline_text_payload(file_path):
with open(file_path, 'rb') as ff:
content = ff.read()
return {'text_snippet': {'content': content, 'mime_type': 'text/plain'} }
def pdf_payload(file_path):
return {'document': {'input_config': {'gcs_source': {'input_uris': [file_path] } } } }
def get_prediction(file_path, model_name):
options = ClientOptions(api_endpoint='eu-automl.googleapis.com')
prediction_client = automl.PredictionServiceClient(client_options=options)
payload = inline_text_payload(file_path)
params = {}
request = prediction_client.predict(name=model_name, payload=payload, params=params)
return request # waits until request is returned
if __name__ == '__main__':
file_path = sys.argv[1]
model_name = sys.argv[2]
print(get_prediction(file_path, model_name))
我是 python 的新手。已经训练了自定义 Google 自然语言模型并尝试执行 google.
提供的示例import sys
import os
from google.api_core.client_options import ClientOptions
from google.cloud import automl
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="my_service_account.json"
def inline_text_payload(file_path):
with open(file_path, 'rb') as ff:
content = ff.read()
return {'text_snippet': {'content': content, 'mime_type': 'text/plain'} }
def get_prediction(file_path, model_name):
options = ClientOptions(api_endpoint='eu-automl.googleapis.com')
prediction_client = automl.PredictionServiceClient(client_options=options)
payload = inline_text_payload(file_path)
params = {}
request = prediction_client.predict(model_name, payload, params)
return request # waits until request is returned
if __name__ == '__main__':
file_path = sys.argv[1]
model_name = sys.argv[2]
print(get_prediction(file_path, model_name))
通过执行此代码,我收到错误消息:
Traceback (most recent call last):
File "predict.py", line 33, in <module>
print(get_prediction(file_path, model_name))
File "predict.py", line 26, in get_prediction
request = prediction_client.predict(model_name, payload, params)
TypeError: predict() takes from 1 to 2 positional arguments but 4 were given
我进行了多次搜索,但似乎找不到问题所在。如果有经验的人可以看看并指出正确的方向,我将不胜感激。
]更新]
不得不重新表述 prediction_client.predict
参数。工作代码:
import sys
from google.api_core.client_options import ClientOptions
from google.cloud import automl
import os
os.environ["GOOGLE_APPLICATION_CREDENTIALS"]="my_service_account.json"
def inline_text_payload(file_path):
with open(file_path, 'rb') as ff:
content = ff.read()
return {'text_snippet': {'content': content, 'mime_type': 'text/plain'} }
def pdf_payload(file_path):
return {'document': {'input_config': {'gcs_source': {'input_uris': [file_path] } } } }
def get_prediction(file_path, model_name):
options = ClientOptions(api_endpoint='eu-automl.googleapis.com')
prediction_client = automl.PredictionServiceClient(client_options=options)
payload = inline_text_payload(file_path)
params = {}
request = prediction_client.predict(name=model_name, payload=payload, params=params)
return request # waits until request is returned
if __name__ == '__main__':
file_path = sys.argv[1]
model_name = sys.argv[2]
print(get_prediction(file_path, model_name))