尝试让 matplotlib 将标题设置为我为 ticker 参数选择的任何输入

trying to have matplotlib set the title as whatever input I choose for ticker parameter

如标题中所述,试图让 matplotlib 仅使用我之前在参数中指定的代码作为标题,而不是每次都手动更改 plt.title("TSLA") 命令。我尝试了一些不同的东西,比如 plt.title("ticker()") 但它说 str object can't be called.

如有任何想法,我们将不胜感激!绘图命令在底部附近。

这是我的代码:

  import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import time
    import os
    import random
    from collections import deque
    
    import tensorflow as tf
    from tensorflow.keras.models import Sequential
    from tensorflow.keras.layers import LSTM, Dense, Dropout, Bidirectional
    from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard
    from sklearn import preprocessing
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    import yfinance as yf
    
    ### QQQ 10 day price predictor
    
    # Reproducability
    np.random.seed(42)
    tf.random.set_seed(42)
    random.seed(42)
    
    #units = neurons
    def load_data(ticker, period, interval, n_steps=200, scale=True, shuffle=True, lookup_step=10, test_size=.2,
                  feature_columns=['Close', 'Volume', 'Open', 'High', 'Low']):
        '''
        :param ticker: Ticker you want to load, dtype: str
        :param period: Time period you want data from, dtype: str(options in program)
        :param interval: Interval for data, dtype:str
        :param n_steps: Past sequence length used to predict, default = 50, dtype: int
        :param scale: Whether to scale data b/w 0 and 1, default = True, dtype: Bool
        :param shuffle: Whether to shuffle data, default = True, dtyper: Bool
        :param lookup_step: Future lookup step to predict, default = 1(next day), dtype:int
        :param test_size: ratio for test data, default is .2 (20% test data), dtype: float
        :param feature_columns: list of features fed into the model, default is OHLCV, dtype: list
        :return:
        '''
        df = yf.download(tickers=ticker, period=period, interval=interval,
                         group_by='ticker',
                         # adjust all OHLC automatically
                         auto_adjust=True, prepost=True, threads=True, proxy=None)
    
        result = {}
        result['df'] = df.copy()
    
        for col in feature_columns:
            assert col in df.columns, f"'{col}' does not exist in the dataframe."
        if scale:
            column_scaler = {}
            # scale the data (prices) from 0 to 1
            for column in feature_columns:
                scaler = preprocessing.MinMaxScaler()
                df[column] = scaler.fit_transform(np.expand_dims(df[column].values, axis=1))
                column_scaler[column] = scaler
            # add the MinMaxScaler instances to the result returned
            result["column_scaler"] = column_scaler
        # add the target column (label) by shifting by `lookup_step`
        df['future'] = df['Close'].shift(-lookup_step)
        # last `lookup_step` columns contains NaN in future column
        # get them before droping NaNs
        last_sequence = np.array(df[feature_columns].tail(lookup_step))
        # drop NaNs
        df.dropna(inplace=True)
        sequence_data = []
        sequences = deque(maxlen=n_steps)
        for entry, target in zip(df[feature_columns].values, df['future'].values):
            sequences.append(entry)
            if len(sequences) == n_steps:
                sequence_data.append([np.array(sequences), target])
        # get the last sequence by appending the last `n_step` sequence with `lookup_step` sequence
        # for instance, if n_steps=50 and lookup_step=10, last_sequence should be of 60 (that is 50+10) length
        # this last_sequence will be used to predict future stock prices not available in the dataset
        last_sequence = list(sequences) + list(last_sequence)
        last_sequence = np.array(last_sequence)
        # add to result
        result['last_sequence'] = last_sequence
        # construct the X's and y's
        X, y = [], []
        for seq, target in sequence_data:
            X.append(seq)
            y.append(target)
        # convert to numpy arrays
        X = np.array(X)
        y = np.array(y)
        # reshape X to fit the neural network
        X = X.reshape((X.shape[0], X.shape[2], X.shape[1]))
        # split the dataset
        result["X_train"], result["X_test"], result["y_train"], result["y_test"] = train_test_split(X, y,
                                                                                   test_size=test_size, shuffle=shuffle)
        # return the result
        return result
    
    def create_model(sequence_length, units=256, cell=LSTM, n_layers=3, dropout=0.3,
                    loss="mean_absolute_error", optimizer="adam", bidirectional=False):
        model = Sequential()
        for i in range(n_layers):
            if i == 0:
                # first layer
                if bidirectional:
                    model.add(Bidirectional(cell(units, return_sequences=True), input_shape=(None, sequence_length)))
                else:
                    model.add(cell(units, return_sequences=True, input_shape=(None, sequence_length)))
            elif i == n_layers - 1:
                # last layer
                if bidirectional:
                    model.add(Bidirectional(cell(units, return_sequences=False)))
                else:
                    model.add(cell(units, return_sequences=False))
            else:
                # hidden layers
                if bidirectional:
                    model.add(Bidirectional(cell(units, return_sequences=True)))
                else:
                    model.add(cell(units, return_sequences=True))
            # add dropout after each layer
            model.add(Dropout(dropout))
        model.add(Dense(1, activation="linear"))
        model.compile(loss=loss, metrics=["mean_absolute_error"], optimizer=optimizer)
        return model
    
    N_STEPS = 40
    # valid periods: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max
    PERIOD = '6mo'
    # valid intervals: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo
    INTERVAL = '1h'
    # Lookup step, 1 is the next day
    LOOKUP_STEP = 10
    # test ratio size, 0.2 is 20%
    TEST_SIZE = 0.3
    # features to use
    FEATURE_COLUMNS = ["Close", "Volume", "Open", "High", "Low"]
    # date now
    date_now = time.strftime("%Y-%m-%d")
    
    # > model parameters <
    N_LAYERS = 3
    #Type of model
    CELL = LSTM
    # Number of neurons
    UNITS = 256
    # Dropout rate
    DROPOUT = 0.3
    # whether to use bidirectional RNNs
    BIDIRECTIONAL = False
    
    # > training parameters <
    # LOSS = "mae"
    # huber loss
    LOSS = "huber_loss"
    OPTIMIZER = "adam"
    BATCH_SIZE = 64
    EPOCHS = 100
    ticker = "QQQ"
    
    #save model
    model_name = f"{date_now}_{ticker}-{LOSS}-{OPTIMIZER}-{CELL.__name__}-seq-{N_STEPS}-step-{LOOKUP_STEP}-layers-{N_LAYERS}-units-{UNITS}"
    if BIDIRECTIONAL:
        model_name += "-b"
    
    # folders that store results
    if not os.path.isdir("results"):
        os.mkdir("results")
    if not os.path.isdir("logs"):
        os.mkdir("logs")
    if not os.path.isdir("data"):
        os.mkdir("data")
    
    data = load_data(ticker, PERIOD, INTERVAL, N_STEPS, lookup_step=LOOKUP_STEP, test_size=TEST_SIZE, feature_columns=FEATURE_COLUMNS)
    # save the dataframe
    data["df"].to_csv()
    # construct the model
    model = create_model(N_STEPS, loss=LOSS, units=UNITS, cell=CELL, n_layers=N_LAYERS,
                        dropout=DROPOUT, optimizer=OPTIMIZER, bidirectional=BIDIRECTIONAL)
    # some tensorflow callbacks
    checkpointer = ModelCheckpoint(os.path.join("results", model_name + ".h5"), save_weights_only=True, save_best_only=True, verbose=1)
    tensorboard = TensorBoard(log_dir=os.path.join("logs", model_name))
    history = model.fit(data["X_train"], data["y_train"],
                        batch_size=BATCH_SIZE,
                        epochs=EPOCHS,
                        validation_data=(data["X_test"], data["y_test"]),
                        callbacks=[checkpointer, tensorboard],
                        verbose=1)
    model.save(os.path.join("results", model_name) + ".h5")
    
    # >> Testing the Model <<
    
    data = load_data(ticker, PERIOD, INTERVAL, N_STEPS, lookup_step=LOOKUP_STEP, test_size=TEST_SIZE,
                    feature_columns=FEATURE_COLUMNS, shuffle=False)
    # construct the model
    model = create_model(N_STEPS, loss=LOSS, units=UNITS, cell=CELL, n_layers=N_LAYERS,
                        dropout=DROPOUT, optimizer=OPTIMIZER, bidirectional=BIDIRECTIONAL)
    model_path = os.path.join("results", model_name) + ".h5"
    model.load_weights(model_path)
    
    # evaluate the model
    mse, mae = model.evaluate(data["X_test"], data["y_test"], verbose=0)
    # calculate the mean absolute error (inverse scaling)
    mean_absolute_error = data["column_scaler"]["Close"].inverse_transform([[mae]])[0][0]
    print("Mean Absolute Error:", mean_absolute_error)
    
    def predict(model, data):
        last_sequence = data["last_sequence"][-N_STEPS:]
        column_scaler = data["column_scaler"]
        last_sequence = last_sequence.reshape((last_sequence.shape[1], last_sequence.shape[0]))
        last_sequence = np.expand_dims(last_sequence, axis=0)
        # get the prediction (scaled from 0 to 1)
        prediction = model.predict(last_sequence)
        # get the price (by inverting the scaling)
        predicted_price = column_scaler["Close"].inverse_transform(prediction)[0][0]
        return predicted_price
    
    # predict the future price
    future_price = predict(model, data)
    print(f"Future price after {LOOKUP_STEP} days is {future_price:.2f}$")
    
    def plot_graph(model, data):
        y_test = data["y_test"]
        X_test = data["X_test"]
        y_pred = model.predict(X_test)
        y_test = np.squeeze(data["column_scaler"]["Close"].inverse_transform(np.expand_dims(y_test, axis=0)))
        y_pred = np.squeeze(data["column_scaler"]["Close"].inverse_transform(y_pred))
        currently last 200 days
        plt.plot(y_test[-200:], c='b')
        plt.plot(y_pred[-200:], c='r')
        plt.xlabel("Days")
        plt.ylabel("Price")
        ### added plot title -KH
        plt.title("QQQ Price Chart")
        plt.legend(["Actual Price", "Predicted Price"])
        plt.show()
    
    plot_graph(model, data)
    
    def accuracy(model, data):
        y_test = data["y_test"]
        X_test = data["X_test"]
        y_pred = model.predict(X_test)
        y_test = np.squeeze(data["column_scaler"]["Close"].inverse_transform(np.expand_dims(y_test, axis=0)))
        y_pred = np.squeeze(data["column_scaler"]["Close"].inverse_transform(y_pred))
        y_pred = list(map(lambda current, future: int(float(future) > float(current)), y_test[:-LOOKUP_STEP], y_pred[LOOKUP_STEP:]))
        y_test = list(map(lambda current, future: int(float(future) > float(current)), y_test[:-LOOKUP_STEP], y_test[LOOKUP_STEP:]))
        return accuracy_score(y_test, y_pred)
    
    print(str(LOOKUP_STEP) + ":", "Accuracy Score:", accuracy(model, data)) 

使用 f 格式化字符串文字并将变量名放在大括号中,如下所示:

plt.title(f'{ticker}')