带有 Manim 的长文本

Long Text with Manim

在使用 Manim 库的社区版呈现长文本时,我注意到信息在可见 window 之外呈现,效果相当不尽如人意。我怀疑问题的根源是 Latex 未能确保文本保留在 pdf 边界内。有没有自动换行的方法?我不想手动指定换行符,因为文本将不再对齐。

这是一个最小的例子:

from manim import *


class Edge_Wise(Scene):
    def construct(self):
        text=Tex("\text{First we conceptualize an undirected graph  ${G}$  as a union of a finite number of line segments residing in  ${\mathbb{{{C}}}}$ . By taking our earlier parametrization, we can create an almost trivial extension to  ${\mathbb{{{R}}}}^{{{3}}}$ . In the following notation, we write a bicomplex number of a 2-tuple of complex numbers, the latter of which is multiplied by the constant  ${j}$ .  ${z}_{{0}}\in{\mathbb{{{C}}}}_{{>={0}}}$  is an arbitrary point in the upper half plane from which the contour integral begins. The function  ${\tan{{\left(\frac{{{\theta}-{\pi}}}{{z}}\right)}}}:{\left[{0},{2}{\pi}\right)}\to{\left[-\infty,\infty\right)}$  ensures that the vertices at  $\infty$  for the Schwarz-Christoffel transform correspond to points along the branch cut at  ${\mathbb{{{R}}}}_{{+}}$ .}")
        text.scale(0.6)
        self.play(FadeIn(text))
        self.wait(1)
        self.play(FadeOut(text))

您使用的\text环境没有换行。它旨在将文本格式化为数学模式中的文本,在 $...$ 之外时不需要它。以下示例为您提供了两端对齐的文本:

class SquareToCircle(Scene):
    def construct(self):
        text=Tex("\justifying {First we conceptualize an undirected graph  ${G}$  as a union of a finite number of line segments residing in  ${\mathbb{{{C}}}}$ . By taking our earlier parametrization, we can create an almost trivial extension to  ${\mathbb{{{R}}}}^{{{3}}}$ . In the following notation, we write a bicomplex number of a 2-tuple of complex numbers, the latter of which is multiplied by the constant  ${j}$ .  ${z}_{{0}}\in{\mathbb{{{C}}}}_{{>={0}}}$  is an arbitrary point in the upper half plane from which the contour integral begins. The function  ${\tan{{\left(\frac{{{\theta}-{\pi}}}{{z}}\right)}}}:{\left[{0},{2}{\pi}\right)}\to{\left[-\infty,\infty\right)}$  ensures that the vertices at  $\infty$  for the Schwarz-Christoffel transform correspond to points along the branch cut at  ${\mathbb{{{R}}}}_{{+}}$ .}")
        text.scale(0.6)
        self.play(FadeIn(text))
        self.wait(1)
        self.play(FadeOut(text))

结果: