使用存储在 python 中多个矩阵中的数据创建和求解线性方程组的不同组合
Create and solve different combinations of linear equation systems using data stored in several matrices in python
我想举一个简单的例子来说明我想做什么。
我有一些在此步骤之前计算并存储在矩阵中的数据。在这个简单的例子中,我们只取两个 2x2 矩阵。它们可能看起来像这样:
A1=np.array([[1, 2], [0.5, 1.5]])
A2=np.array([[0.5, 1.2], [1.3, 2]])
我还有解向量 b,它看起来像:
b=[4, 3]
现在我想求解线性方程组 Ax=b 的所有可能组合,这些组合可以根据存储在矩阵 A1 和 A2 中的数据创建。在两个矩阵中,列的数据相互连接。因此,我的示例中可能要求解的线性方程组如下所示:
LES1:
1 * x1 + 0.5 * x2 = 4
0.5 * x1 + 1.3 * x2 = 3
LES2:
1 * x1 + 1.2 * x2 = 4
0.5 * x1 + 2 * x2 = 3
第 3 课:
2 * x1 + 0.5 * x2 = 4
1.5 * x1 + 1.3 * x2 = 3
第 4 课:
2 * x1 + 1.2 * x2 = 4
1.5 * x1 + 2 * x2 = 3
使用 np.linalg.solve(Ax, b)
我得到四组 x1
和 x2
值,这些值将在下一步中进行评估,以找到符合特定要求的输入数据的最佳组合.我知道我可以使用嵌套的 for 循环来解决这个问题,将输入数组 A1
和 A2
分割成线性方程组 LES1 到 LES4 并一个接一个地求解它们。
但在我的实际应用程序中,我需要处理比本例中更多的数据,这意味着我有两个以上的矩阵,而且它们也更大,这将创建更多需要求解的线性方程组的可能组合.
如果有人能给我一个提示来解决这个问题而不使用 for 循环来跳过矩阵的列,我会非常非常高兴。或者也许有一种可能的方式来有效地使用 for 循环?
在此先感谢大家
大卫
更新:
Mihails 的回答完美地解决了我描述的问题。然而,当使用我的“现实生活数据”时,不幸的是,我在我的问题和描述的例子中没有考虑到两个问题。
- 矩阵的形状并不总是相同的。尽管所有矩阵的行数都相同,但列数不同。例如:
A1=np.array([[4, 2, 3, 5, 4], [1, 0.5, 5, 3, 1], [2, 3, 5, 4, 2]])
A2=np.array([[4, 2, 4], [8, 4, 1], [2, 8, 9]])
A3=np.array([[4, 8, 3, 2], [5, 6, 4, 5], [1, 2, 5, 7]])
我仍然想找到我实际问题中提到的线性方程组的所有组合。有什么方法可以使给定的解决方案适应这项任务吗?我试图阅读 itertools
文档来解决这个问题,但我无法弄清楚,因为无法像创建数组 A 时在答案中所做的那样使用此数据创建数组数组。并且在使用 i.
进行迭代时,将它们组合在一个列表中会给我带来问题
- 处理数据后,我需要知道哪个输入数据集最符合我的要求。表示哪种列组合可提供最佳结果。由于列中的值是在较早的步骤中根据某些测量数据计算得出的,因此我想保留它们所基于的测量数据的名称(可以从较早的步骤中的数据中提取)。我知道在使用
pd.DataFrame
进行存储时我可以给出列名,但我不确定它们是否可以用于执行我要求的任务。
再次感谢您,对于明显到基本的“迷你示例”感到抱歉
一种优雅而简单的方法是使用 itertools.product
来避免硬编码循环。它采用多个列表并计算笛卡尔积。在下方,您可以看到它如何计算任意数量的列的组合。
在性能方面,zip
和 product
使用生成器,因此它们不会直接填充您的内存,而是动态生成每个元素。
另一方面,如果您需要计算非常大量的数据,您可以考虑将负载分配给多个 cores/machines。
import numpy as np
from itertools import product
A1=np.array([[1, 2], [0.5, 1.5]])
A2=np.array([[0.5, 1.2], [1.3, 2]])
A = np.array([A1, A2])
b=[4, 3]
combine_ith_column = lambda A, i: product(*A[:, i])
combine_all_columns = lambda A: [combine_ith_column(A, i) for i in range(A.shape[1])]
A_space = zip(*combine_all_columns(A))
for Ax in A_space:
print (np.linalg.solve(Ax, b))
我想举一个简单的例子来说明我想做什么。 我有一些在此步骤之前计算并存储在矩阵中的数据。在这个简单的例子中,我们只取两个 2x2 矩阵。它们可能看起来像这样:
A1=np.array([[1, 2], [0.5, 1.5]])
A2=np.array([[0.5, 1.2], [1.3, 2]])
我还有解向量 b,它看起来像:
b=[4, 3]
现在我想求解线性方程组 Ax=b 的所有可能组合,这些组合可以根据存储在矩阵 A1 和 A2 中的数据创建。在两个矩阵中,列的数据相互连接。因此,我的示例中可能要求解的线性方程组如下所示:
LES1:
1 * x1 + 0.5 * x2 = 4
0.5 * x1 + 1.3 * x2 = 3
LES2:
1 * x1 + 1.2 * x2 = 4
0.5 * x1 + 2 * x2 = 3
第 3 课:
2 * x1 + 0.5 * x2 = 4
1.5 * x1 + 1.3 * x2 = 3
第 4 课:
2 * x1 + 1.2 * x2 = 4
1.5 * x1 + 2 * x2 = 3
使用 np.linalg.solve(Ax, b)
我得到四组 x1
和 x2
值,这些值将在下一步中进行评估,以找到符合特定要求的输入数据的最佳组合.我知道我可以使用嵌套的 for 循环来解决这个问题,将输入数组 A1
和 A2
分割成线性方程组 LES1 到 LES4 并一个接一个地求解它们。
但在我的实际应用程序中,我需要处理比本例中更多的数据,这意味着我有两个以上的矩阵,而且它们也更大,这将创建更多需要求解的线性方程组的可能组合.
如果有人能给我一个提示来解决这个问题而不使用 for 循环来跳过矩阵的列,我会非常非常高兴。或者也许有一种可能的方式来有效地使用 for 循环?
在此先感谢大家
大卫
更新:
Mihails 的回答完美地解决了我描述的问题。然而,当使用我的“现实生活数据”时,不幸的是,我在我的问题和描述的例子中没有考虑到两个问题。
- 矩阵的形状并不总是相同的。尽管所有矩阵的行数都相同,但列数不同。例如:
A1=np.array([[4, 2, 3, 5, 4], [1, 0.5, 5, 3, 1], [2, 3, 5, 4, 2]])
A2=np.array([[4, 2, 4], [8, 4, 1], [2, 8, 9]])
A3=np.array([[4, 8, 3, 2], [5, 6, 4, 5], [1, 2, 5, 7]])
我仍然想找到我实际问题中提到的线性方程组的所有组合。有什么方法可以使给定的解决方案适应这项任务吗?我试图阅读 itertools
文档来解决这个问题,但我无法弄清楚,因为无法像创建数组 A 时在答案中所做的那样使用此数据创建数组数组。并且在使用 i.
- 处理数据后,我需要知道哪个输入数据集最符合我的要求。表示哪种列组合可提供最佳结果。由于列中的值是在较早的步骤中根据某些测量数据计算得出的,因此我想保留它们所基于的测量数据的名称(可以从较早的步骤中的数据中提取)。我知道在使用
pd.DataFrame
进行存储时我可以给出列名,但我不确定它们是否可以用于执行我要求的任务。 再次感谢您,对于明显到基本的“迷你示例”感到抱歉
一种优雅而简单的方法是使用 itertools.product
来避免硬编码循环。它采用多个列表并计算笛卡尔积。在下方,您可以看到它如何计算任意数量的列的组合。
在性能方面,zip
和 product
使用生成器,因此它们不会直接填充您的内存,而是动态生成每个元素。
另一方面,如果您需要计算非常大量的数据,您可以考虑将负载分配给多个 cores/machines。
import numpy as np
from itertools import product
A1=np.array([[1, 2], [0.5, 1.5]])
A2=np.array([[0.5, 1.2], [1.3, 2]])
A = np.array([A1, A2])
b=[4, 3]
combine_ith_column = lambda A, i: product(*A[:, i])
combine_all_columns = lambda A: [combine_ith_column(A, i) for i in range(A.shape[1])]
A_space = zip(*combine_all_columns(A))
for Ax in A_space:
print (np.linalg.solve(Ax, b))