pandas 数据框中使用日期时间的部分 for 循环

Partail for-loop in pandas dataframe using datetime

我在数据框中有 Apple 的 1 分钟代码信息:

             Local time   Open    High     Low   Close  Volume
0   2018-04-19 15:00:00 46.707  46.708  46.687  46.687  0.0150
1   2018-04-19 15:01:00 46.688  46.688  46.667  46.688  0.0320
2   2018-04-19 15:02:00 46.687  46.728  46.677  46.728  0.0091
3   2018-04-19 15:03:00 46.727  46.728  46.708  46.717  0.0332
4   2018-04-19 15:04:00 46.708  46.718  46.677  46.677  0.0243

我已使用 pd.to_datetime(df['Local time']) 将“当地时间”列转换为日期时间。我想单独经历每一天来回测策略。但我不知道如何在日期更改定义的时间循环遍历 df 的一个块。我尝试使用一些 for 循环,但它们没有用,因为某些天的交易分钟数明显不同(不是 390):

index = 390 #Number of traded minutes on most days
rows = 286155 #number of rows in the dataset
for x in range(286155/390):
    index = index * x
    index2 = index * (x-1)
    for y in df[index2:index]:
        '''Strategy to be Executed for that day'''

我怎样才能实现我想做的事情?

如@Ben.T所建议:

for dt, df in data.groupby(data["Local time"].dt.date):
    print(f"\n[{dt}]")
    print(df.head())
    # do stuff here

[2021-04-16]
           Local time  Value
0 2021-04-16 00:00:00  28.15
1 2021-04-16 00:01:00  25.33
2 2021-04-16 00:02:00  82.04
3 2021-04-16 00:03:00  17.81
4 2021-04-16 00:04:00  80.71

[2021-04-17]
              Local time  Value
1440 2021-04-17 00:00:00  67.72
1441 2021-04-17 00:01:00  52.91
1442 2021-04-17 00:02:00  26.40
1443 2021-04-17 00:03:00  69.11
1444 2021-04-17 00:04:00  91.88

[2021-04-18]
              Local time  Value
2880 2021-04-18 00:00:00  13.03
2881 2021-04-18 00:01:00  53.42
2882 2021-04-18 00:02:00   9.28
2883 2021-04-18 00:03:00  77.74
2884 2021-04-18 00:04:00  24.91