如何使用 Python 在 Unified AI Platform 上编辑端点设置?
How to edit endpoint settings on Unified AI Platform using Python?
我已在 Unified Cloud AI Platform 上成功创建了一个端点并向其部署了两个 Model
- Model A
和 Model B
分别具有 20% 和 80% 的流量.现在,在 Cloud Console(UI)上,我可以选择 Edit Settings 并将流量分配分别更改为 30% 和 70% 以及 Model
已部署。但是我无法弄清楚如何使用 Python 客户端 API.
来做到这一点
here 提供的文档不足以理解我们如何做到这一点。任何帮助将不胜感激。
AI Platform Unified 的文档还没有关于如何使用 python 编辑流量的示例。这是相关代码:
注意:不要忘记更新 end_point
(端点 ID)、project
(项目 ID)、model_id_1
和 model_id_2
的值20=]代码。
from google.cloud import aiplatform
from google.cloud import aiplatform_v1
def update_endpoint_traffic(
end_point: str,
project: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
timeout: int = 7200,
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.EndpointServiceClient(client_options=client_options)
client_model = aiplatform_v1.services.model_service.ModelServiceClient(client_options=client_options)
deployed_model_id_list = []
model_id_1 = 'xxxxxxxx' # place your model id here
model_id_2 = 'xxxxxxxx' # place your model id here
model_list = [f'projects/{project}/locations/{location}/models/{model_id_1}',f'projects/{project}/locations/{location}/models/{model_id_2}']
for model in model_list:
model_request = aiplatform_v1.types.GetModelRequest(name=model)
model_info = client_model.get_model(request=model_request)
deployed_models_info = model_info.deployed_models
deployed_model_id=model_info.deployed_models[0].deployed_model_id
deployed_model_id_list.append(deployed_model_id)
traffic_split = {deployed_model_id_list[0]: 60, deployed_model_id_list[1]:40} #update values of 60 and 40 to desired traffic split ex.(30 70)
name=f'projects/{project}/locations/{location}/endpoints/{end_point}'
endpoint = aiplatform_v1.types.Endpoint(name=name,traffic_split=traffic_split)
update_endpoint = aiplatform_v1.types.UpdateEndpointRequest(endpoint=endpoint)
client.update_endpoint(request=update_endpoint)
update_endpoint_traffic(end_point='your-endpoint-id',project='your-project-id')
我已在 Unified Cloud AI Platform 上成功创建了一个端点并向其部署了两个 Model
- Model A
和 Model B
分别具有 20% 和 80% 的流量.现在,在 Cloud Console(UI)上,我可以选择 Edit Settings 并将流量分配分别更改为 30% 和 70% 以及 Model
已部署。但是我无法弄清楚如何使用 Python 客户端 API.
here 提供的文档不足以理解我们如何做到这一点。任何帮助将不胜感激。
AI Platform Unified 的文档还没有关于如何使用 python 编辑流量的示例。这是相关代码:
注意:不要忘记更新 end_point
(端点 ID)、project
(项目 ID)、model_id_1
和 model_id_2
的值20=]代码。
from google.cloud import aiplatform
from google.cloud import aiplatform_v1
def update_endpoint_traffic(
end_point: str,
project: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
timeout: int = 7200,
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.EndpointServiceClient(client_options=client_options)
client_model = aiplatform_v1.services.model_service.ModelServiceClient(client_options=client_options)
deployed_model_id_list = []
model_id_1 = 'xxxxxxxx' # place your model id here
model_id_2 = 'xxxxxxxx' # place your model id here
model_list = [f'projects/{project}/locations/{location}/models/{model_id_1}',f'projects/{project}/locations/{location}/models/{model_id_2}']
for model in model_list:
model_request = aiplatform_v1.types.GetModelRequest(name=model)
model_info = client_model.get_model(request=model_request)
deployed_models_info = model_info.deployed_models
deployed_model_id=model_info.deployed_models[0].deployed_model_id
deployed_model_id_list.append(deployed_model_id)
traffic_split = {deployed_model_id_list[0]: 60, deployed_model_id_list[1]:40} #update values of 60 and 40 to desired traffic split ex.(30 70)
name=f'projects/{project}/locations/{location}/endpoints/{end_point}'
endpoint = aiplatform_v1.types.Endpoint(name=name,traffic_split=traffic_split)
update_endpoint = aiplatform_v1.types.UpdateEndpointRequest(endpoint=endpoint)
client.update_endpoint(request=update_endpoint)
update_endpoint_traffic(end_point='your-endpoint-id',project='your-project-id')