在精益证明的目标中应用功能

Apply function in goal in lean proof

有一个树数据结构和一个flip方法。我想写一个证明,如果你将 flip 方法应用于一棵树两次,你就会得到初始树。我有一个目标

⊢ flip_mytree (flip_mytree (mytree.branch t_ᾰ t_ᾰ_1 t_ᾰ_2)) = mytree.branch t_ᾰ t_ᾰ_1 t_ᾰ_2

我想用 flip_mytree 的结果替换 flip_mytree (mytree.branch t_ᾰ t_ᾰ_1 t_ᾰ_2)。我该怎么做?或者我如何将 (mytree.branch a l r) := mytree.branch a (flip_mytree r) (flip_mytree l) 假设从 flip_mytree 函数定义中提取到我的定理上下文中?

我读过 rwapplyhave 战术,但它们在这里似乎毫无用处。

下面是一个完整的例子。

universes u

inductive mytree (A : Type u) : Type u
| leaf : A → mytree
| branch : A → mytree → mytree → mytree

def flip_mytree {A : Type u} : mytree A → mytree A
| t@(mytree.leaf _)     := t
| (mytree.branch a l r) := mytree.branch a (flip_mytree r) (flip_mytree l)


theorem flip_flip {A : Type u} {t : mytree A} : flip_mytree (flip_mytree t) = t :=
begin
  cases t,
  

end

我认为你需要做归纳而不是案例才能工作。 但这只需要 inductionrw 就可以做到,如下所示

universes u

inductive mytree (A : Type u) : Type u
| leaf : A → mytree
| branch : A → mytree → mytree → mytree

def flip_mytree {A : Type u} : mytree A → mytree A
| t@(mytree.leaf _)     := t
| (mytree.branch a l r) := mytree.branch a (flip_mytree r) (flip_mytree l)


theorem flip_flip {A : Type u} {t : mytree A} : flip_mytree (flip_mytree t) = t :=
begin
  induction t with l a b₁ b₂ ih₁ ih₂,
  rw [flip_mytree],
  refl,
  
  rw [flip_mytree, flip_mytree],
  rw [ih₁, ih₂],
end

证明它的几种替代方法

theorem flip_flip {A : Type u} : ∀ {t : mytree A}, flip_mytree (flip_mytree t) = t
| t@(mytree.leaf _)     := rfl
| (mytree.branch a l r) := by rw [flip_mytree, flip_mytree, flip_flip, flip_flip]

theorem flip_flip' {A : Type u} {t : mytree A} : flip_mytree (flip_mytree t) = t :=
by induction t; simp [*, flip_mytree]