如何使用 geom_smooth() 计算整个平滑系列并使用 facet_wrap() 显示每个平滑系列?
How can I calculate an entire family of smooths using geom_smooth() and display each one using facet_wrap()?
在 df=3
的 geom_smooth()
, there is an example that shows how to fit a B-spline smooth to the hwy
vs. displ
columns of the tidyverse mpg dataset, using a parameter setting for the bs()
函数的文档中:
我想重复相同的示例,但我不想使用 df
参数的单个设置来计算单个平滑,而是想使用 df
的范围值(例如 3、5、7、9)来计算一系列平滑度,然后使用 facet_wrap()
在单独的面板中显示每个平滑度(同时作为次要补充,我还想显示 gray-shaded 平滑曲线周围的置信区间)。但是,我不太清楚我应该使用什么语法,或者 ggplot2 是否甚至可以灵活地支持直接在 geom_smooth()
.
内部进行这样的计算
我在下面发布了一个 MWE:
library(tidyverse)
library(splines)
# ---- Preface with optional additional problem context ----
# This fits 4 different B-splines to the "hwy" vs. "displ" columns of the
# tidyverse "mpg" tibble, with the bs() df parameter set to c(3, 5, 7, 9).
# This is essentially representative of the kind of result I want, except
# that instead of computing it externally and saving the result to a list
# as I've done here, I want to do it automatically inside of geom_smooth().
fitobj <- list()
for(ii in seq(3,9,2)) {
fitobj[[as.character(ii)]] <- lm(formula = hwy ~ bs(displ, df=ii), data=mpg)
}
# ---- MWE really starts here ----
# Make 4 identical copies of the "mpg" tibble, with an extra column tacked
# onto the right containing values 3, 5, 7, 9
mpg_rep <- NULL
for(ii in seq(3,9,2)) {
tbl <- mpg
tbl$splinedf <- ii
mpg_rep <- bind_rows(mpg_rep, tbl)
}
# Make a baseline plot; smooths will be appended afterward
plt <- ggplot(mpg_rep, aes(x=displ, y=hwy, group=splinedf)) +
geom_point() +
facet_wrap(~splinedf)
# This does _almost_ what I want, except that instead of plotting a different
# smooth in each panel, it plots the same smooth four times redundantly
print(plt + geom_smooth(method = lm, formula = y ~ bs(x, df=3)))
# This looks like it has sort of the right syntax to do what I want, however
# it returns an error message; I guess perhaps because I'm not allowed to
# reference an aesthetic like this inside a formula?
print(plt + geom_smooth(method = lm, formula = y ~ bs(x, df=splinedf)))
这是一个示例输出,看起来 几乎 就像我想要的,除了我想要 4 种不同的平滑而不是相同的平滑 4 次:
我如何修改 MWE 以使其完全按照我的要求执行?
您可以 lapply()
平滑图层以添加到图中,同时提供新的方面变量。
library(ggplot2)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
lapply(c(3,5,7,9), function(i) {
geom_smooth(
data = ~ cbind(., facet = i),
method = lm,
formula = y ~ splines::bs(x, i)
)
}) +
facet_wrap(vars(facet))
由 reprex package (v1.0.0)
于 2021 年 4 月 21 日创建
在 df=3
的 geom_smooth()
, there is an example that shows how to fit a B-spline smooth to the hwy
vs. displ
columns of the tidyverse mpg dataset, using a parameter setting for the bs()
函数的文档中:
我想重复相同的示例,但我不想使用 df
参数的单个设置来计算单个平滑,而是想使用 df
的范围值(例如 3、5、7、9)来计算一系列平滑度,然后使用 facet_wrap()
在单独的面板中显示每个平滑度(同时作为次要补充,我还想显示 gray-shaded 平滑曲线周围的置信区间)。但是,我不太清楚我应该使用什么语法,或者 ggplot2 是否甚至可以灵活地支持直接在 geom_smooth()
.
我在下面发布了一个 MWE:
library(tidyverse)
library(splines)
# ---- Preface with optional additional problem context ----
# This fits 4 different B-splines to the "hwy" vs. "displ" columns of the
# tidyverse "mpg" tibble, with the bs() df parameter set to c(3, 5, 7, 9).
# This is essentially representative of the kind of result I want, except
# that instead of computing it externally and saving the result to a list
# as I've done here, I want to do it automatically inside of geom_smooth().
fitobj <- list()
for(ii in seq(3,9,2)) {
fitobj[[as.character(ii)]] <- lm(formula = hwy ~ bs(displ, df=ii), data=mpg)
}
# ---- MWE really starts here ----
# Make 4 identical copies of the "mpg" tibble, with an extra column tacked
# onto the right containing values 3, 5, 7, 9
mpg_rep <- NULL
for(ii in seq(3,9,2)) {
tbl <- mpg
tbl$splinedf <- ii
mpg_rep <- bind_rows(mpg_rep, tbl)
}
# Make a baseline plot; smooths will be appended afterward
plt <- ggplot(mpg_rep, aes(x=displ, y=hwy, group=splinedf)) +
geom_point() +
facet_wrap(~splinedf)
# This does _almost_ what I want, except that instead of plotting a different
# smooth in each panel, it plots the same smooth four times redundantly
print(plt + geom_smooth(method = lm, formula = y ~ bs(x, df=3)))
# This looks like it has sort of the right syntax to do what I want, however
# it returns an error message; I guess perhaps because I'm not allowed to
# reference an aesthetic like this inside a formula?
print(plt + geom_smooth(method = lm, formula = y ~ bs(x, df=splinedf)))
这是一个示例输出,看起来 几乎 就像我想要的,除了我想要 4 种不同的平滑而不是相同的平滑 4 次:
我如何修改 MWE 以使其完全按照我的要求执行?
您可以 lapply()
平滑图层以添加到图中,同时提供新的方面变量。
library(ggplot2)
ggplot(mpg, aes(displ, hwy)) +
geom_point() +
lapply(c(3,5,7,9), function(i) {
geom_smooth(
data = ~ cbind(., facet = i),
method = lm,
formula = y ~ splines::bs(x, i)
)
}) +
facet_wrap(vars(facet))
由 reprex package (v1.0.0)
于 2021 年 4 月 21 日创建