在关键字检测器中使用 LSTM 进行 TimeDistributed

TimeDistributed with LSTM in keyword spotter

我正在开发一个关键字检测器,它根据类似于此处显示的语音命令列表处理音频输入和 returns 音频的 class:https://www.tensorflow.org/tutorials/audio/simple_audio

我希望能够处理多帧音频,而不是只处理 1 秒的音频作为输入,比如 5 个时间步长 10 毫秒,然后将它们输入机器学习模型。

本质上,这相当于在我的网络之上添加了一个 TimeDistributed 层。 我想做的第二件事是在密集层之前添加一个 LSTM 层,将我的隐藏层映射到输出 classes.

我的问题:我怎样才能有效地更改下面的代码以添加一个采用多个时间步长的 TimeDistributed 层和一个 LSTM 层。

开始代码:

model = models.Sequential([
    layers.Input(shape=input_shape),
    preprocessing.Resizing(32, 32), 
    norm_layer,
    layers.Conv2D(32, 3, activation='relu'),
    layers.Conv2D(64, 3, activation='relu'),
    layers.MaxPooling2D(),
    layers.Dropout(0.25),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dropout(0.5),
    layers.Dense(num_labels),
])

模型摘要:

Input shape: (124, 129, 1)
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
resizing (Resizing)          (None, 32, 32, 1)         0         
_________________________________________________________________
normalization (Normalization (None, 32, 32, 1)         3         
_________________________________________________________________
conv2d (Conv2D)              (None, 30, 30, 32)        320       
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 28, 28, 64)        18496     
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 14, 14, 64)        0         
_________________________________________________________________
dropout (Dropout)            (None, 14, 14, 64)        0         
_________________________________________________________________
flatten (Flatten)            (None, 12544)             0         
_________________________________________________________________
dense (Dense)                (None, 128)               1605760   
_________________________________________________________________
dropout_1 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 8)                 1032      
=================================================================
Total params: 1,625,611
Trainable params: 1,625,608
Non-trainable params: 3
_________________________________________________________________

尝试 1:添加 LSTM 层

model = models.Sequential([
    layers.Input(shape=input_shape),
    preprocessing.Resizing(32, 32), 
    norm_layer,
    layers.Conv2D(32, 3, activation='relu'),
    layers.Conv2D(64, 3, activation='relu'),
    layers.MaxPooling2D(),
    layers.Dropout(0.25),
    layers.Flatten(),
    layers.Dense(128, activation='relu'),
    layers.Dropout(0.5),
    layers.Flatten(),
    layers.LSTM(32, activation='relu', input_shape=(1,128,98)),
    layers.Dense(num_labels),
])

错误:ValueError: Input 0 of layer lstm_5 is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 128]

尝试 2:添加 TimeDistributed 层:

model = models.Sequential([
    layers.Input(shape=input_shape),
    preprocessing.Resizing(32, 32), 
    norm_layer,
    TimeDistributed(layers.Conv2D(32, 3, activation='relu'), input_shape=(None, 32, 32, 1)),
    TimeDistributed(layers.Conv2D(64, 3, activation='relu'), input_shape=(None, 30, 30, 1)),
    TimeDistributed(layers.MaxPooling2D()),
    TimeDistributed(layers.Dropout(0.25)),
    TimeDistributed(layers.Flatten()),
    TimeDistributed(layers.Dense(128, activation='relu')),
    TimeDistributed(layers.Dropout(0.5)),
    TimeDistributed(layers.Flatten()),
    layers.Dense(num_labels),
])

错误:ValueError: Input 0 of layer conv2d_43 is incompatible with the layer: : expected min_ndim=4, found ndim=3. Full shape received: [None, 32, 1]

我知道我的尺寸有问题。我不确定如何进行。

LSTM 层需要输入:形状为 [batch, timesteps, feature] 的 3D 张量 示例代码片段

import tensorflow as tf
inputs = tf.random.normal([32, 10, 8])
lstm = tf.keras.layers.LSTM(4)
output = lstm(inputs)
print(output.shape)

tf.keras.layers.TimeDistributed 期望输入:形状为 (batch, time, ...)

的输入张量

工作示例代码

inputs = tf.keras.Input(shape=(10, 128, 128, 3))
conv_2d_layer = tf.keras.layers.Conv2D(64, (3, 3))
outputs = tf.keras.layers.TimeDistributed(conv_2d_layer)(inputs)
outputs.shape