在 skLearn 中填充 CountVectorizer()

Padding a CountVectorizer() in skLearn

所以我在 sklearn 中使用 CountVecotrizer() 函数来帮助我创建工作模型预测。

该项目的目标是获取职位描述并将其归入特定类别。我的目

例如:如果第 1 行在字符串中有 20 个单词,那么我希望所有行中都有 20 个单词,所以我需要在数组末尾添加更多 0 或缩短数组(如果有)是太多话了。我正在考虑在 python 中定义一个 Max_Length 以方便我。

想知道我将如何处理这个问题?

CountVectorizer 已经完成了问题的建议,只是在查看稀疏矩阵输出时不太明显。如果我们将它们转换回稠密矩阵,应该会更明显:

from sklearn.feature_extraction.text import CountVectorizer

X_raw = ["every word in this sentence is unique"]

vectorizer = CountVectorizer()
print(vectorizer.fit_transform(X_raw).todense())

带注释的输出:

# Every word is used once
[[1 1 1 1 1 1 1]]

如果有一个词出现在一个字符串中但没有出现在另一个字符串中,它将用 0:

表示
X_raw = [
    "every word in this sentence is unique",
    "every word in this sentence is unique too too",
]

print(vectorizer.fit_transform(X_raw).todense())

带注释的输出:

#             ----- The word 'too' was not used in the first sentence,
#            /      but it was used twice in the second sentence.
#           v
[[1 1 1 1 1 0 1 1]
 [1 1 1 1 1 2 1 1]]