壁虎。 X值不超过一定点
GEKKO. X value does not go beyond certain point
我需要解决一维飞机飞行优化控制问题。我有一架 1000 米高的飞机。我需要它沿 x 轴向前行驶一定距离 (x),同时最大限度地减少油耗。当它达到那个距离 x 时,我需要程序停止。这个函数控制它:m.Equation(x*final<=1500)
.
由于某些原因,在模拟期间我的 x 值不想高于 1310。
我怎样才能解决这个“障碍”?
我的gekko脚本:
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
import math
#Gekko model
m = GEKKO(remote=False)
#Time points
nt = 11
tm = np.linspace(0,1,nt)
m.time = tm
# Variables
Ro = m.Const(value=1.1)
g = m.Const(value=9.80665)
T = m.Var()
T0 = m.Const(value=273)
S = m.Const(value=122.6)
Cd = m.Const(value=0.1)
FuelFlow = m.Var()
D = m.Var()
Thrmax = value=200000
Thr = m.Var()
V = m.Var()
nu = m.Var(value=0)
nuu = nu.value
x = m.Var(value=0)
h = m.Var(value=1000)
mass = m.Var(value=60000)
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
m.options.MAX_ITER=40000 # iteration max number
#Fixed Variable
tf = m.FV(value=1,lb=0.1,ub=1000.0)
tf.STATUS = 1
# Parameters
Tcontr = m.MV(value=0.2,lb=0.2,ub=1)
Tcontr.STATUS = 1
Tcontr.DCOST = 0 #1e-2
# Equations
m.Equation(x.dt()==tf*(V*(math.cos(nuu.value))))#
m.Equation(Thr==Tcontr*Thrmax)
m.Equation(V.dt()==tf*((Thr-D)/mass))#
m.Equation(mass.dt()==tf*(-Thr*(FuelFlow/60)))#
m.Equation(D==0.5*Ro*(V**2)*Cd*S)
m.Equation(FuelFlow==0.75882*(1+(V/2938.5)))
m.Equation(x*final<=1500)
m.Equation(T==T0-h)
# Objective Function
m.Obj(-mass*tf*final)#
m.options.IMODE = 6
m.options.NODES = 3
m.options.MV_TYPE = 1
m.options.SOLVER = 3
#m.open_folder() # to search for infeasibilities
m.solve()
tm = tm * tf.value[0]
print('Final Time: ' + str(tf.value[-1]))
print('Final Speed: ' + str(V.value[-1]))
print('Final X: ' + str(x.value[-1]))
plt.figure(1)
plt.subplot(2,1,1)
plt.plot(tm,Tcontr,'r-',LineWidth=2,label=r'$Tcontr$')
#plt.plot(m.time,x.value,'r--',LineWidth=2,label=r'$x$')
plt.legend(loc='best')
plt.subplot(2,1,2)
plt.plot(tm,x.value,'r--',LineWidth=2,label=r'$x$')
#plt.plot(tm,mass.value,'g:',LineWidth=2,label=r'$mass$')
#plt.plot(tm,D.value,'g:',LineWidth=2,label=r'$D$')
#plt.plot(tm,V.value,'b-',LineWidth=2,label=r'$V$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()
Tcontr
的下限阻止 x
值超过 1310。将下限值设置为 0.1 会将 x
的最终值提高到 2469.76 =15=] 已删除。
Tcontr = m.MV(value=0.2,lb=0.1,ub=1)
当解决方案不是最优的或存在不可行的解决方案时,约束通常是罪魁祸首。检测有问题的约束的一种方法是创建绘图以验证解决方案未被人为约束。
制定约束的另一种方法是结合使用硬约束 m.Equation((x-1500)*final==0)
和软约束来指导解决方案 m.Minimize(final*(x-1500)**2)
。正确设置硬约束很重要。 m.Equation(x*final==1500)
等约束意味着当 final 不等于 1 时,x*0==1500
是不可行的。不等式版本也可以更好地构成 m.Equation((x-1500)*final<=0)
,但原始形式也有效,因为 x*0<1500
.
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
import math
#Gekko model
m = GEKKO(remote=False)
#Time points
nt = 11
tm = np.linspace(0,1,nt)
m.time = tm
# Variables
Ro = m.Const(value=1.1)
g = m.Const(value=9.80665)
T = m.Var()
T0 = m.Const(value=273)
S = m.Const(value=122.6)
Cd = m.Const(value=0.1)
FuelFlow = m.Var()
D = m.Var()
Thrmax = value=200000
Thr = m.Var()
V = m.Var()
nu = m.Var(value=0)
nuu = 0
x = m.Var(value=0)
h = m.Var(value=1000)
mass = m.Var(value=60000)
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
m.options.MAX_ITER=1000 # iteration max number
#Fixed Variable
tf = m.FV(value=1,lb=0.15,ub=1000.0)
tf.STATUS = 1
# Parameters
Tcontr = m.MV(value=0.2,lb=0.1,ub=1)
Tcontr.STATUS = 1
Tcontr.DCOST = 0 #1e-2
# Equations
m.Equation(x.dt()==tf*(V*(math.cos(nuu))))#
m.Equation(Thr==Tcontr*Thrmax)
m.Equation(V.dt()==tf*((Thr-D)/mass))#
m.Equation(mass.dt()==tf*(-Thr*(FuelFlow/60)))#
m.Equation(D==0.5*Ro*(V**2)*Cd*S)
m.Equation(FuelFlow==0.75882*(1+(V/2938.5)))
m.Equation((x-1500)*final==0)
m.Equation(T==T0-h)
# Objective Function
m.Minimize(final*(x-1500)**2)
m.Maximize(mass*tf*final)#
m.options.IMODE = 6
m.options.NODES = 3
m.options.MV_TYPE = 1
m.options.SOLVER = 3
#m.open_folder() # to search for infeasibilities
m.solve()
tm = tm * tf.value[0]
print('Final Time: ' + str(tf.value[-1]))
print('Final Speed: ' + str(V.value[-1]))
print('Final X: ' + str(x.value[-1]))
plt.figure(1)
plt.subplot(2,1,1)
plt.plot(tm,Tcontr,'r-',lw=2,label=r'$Tcontr$')
#plt.plot(m.time,x.value,'r--',lw=2,label=r'$x$')
plt.legend(loc='best')
plt.subplot(2,1,2)
plt.plot(tm,x.value,'r--',lw=2,label=r'$x$')
#plt.plot(tm,mass.value,'g:',lw=2,label=r'$mass$')
#plt.plot(tm,D.value,'g:',lw=2,label=r'$D$')
#plt.plot(tm,V.value,'b-',lw=2,label=r'$V$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()
我需要解决一维飞机飞行优化控制问题。我有一架 1000 米高的飞机。我需要它沿 x 轴向前行驶一定距离 (x),同时最大限度地减少油耗。当它达到那个距离 x 时,我需要程序停止。这个函数控制它:m.Equation(x*final<=1500)
.
由于某些原因,在模拟期间我的 x 值不想高于 1310。
我怎样才能解决这个“障碍”?
我的gekko脚本:
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
import math
#Gekko model
m = GEKKO(remote=False)
#Time points
nt = 11
tm = np.linspace(0,1,nt)
m.time = tm
# Variables
Ro = m.Const(value=1.1)
g = m.Const(value=9.80665)
T = m.Var()
T0 = m.Const(value=273)
S = m.Const(value=122.6)
Cd = m.Const(value=0.1)
FuelFlow = m.Var()
D = m.Var()
Thrmax = value=200000
Thr = m.Var()
V = m.Var()
nu = m.Var(value=0)
nuu = nu.value
x = m.Var(value=0)
h = m.Var(value=1000)
mass = m.Var(value=60000)
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
m.options.MAX_ITER=40000 # iteration max number
#Fixed Variable
tf = m.FV(value=1,lb=0.1,ub=1000.0)
tf.STATUS = 1
# Parameters
Tcontr = m.MV(value=0.2,lb=0.2,ub=1)
Tcontr.STATUS = 1
Tcontr.DCOST = 0 #1e-2
# Equations
m.Equation(x.dt()==tf*(V*(math.cos(nuu.value))))#
m.Equation(Thr==Tcontr*Thrmax)
m.Equation(V.dt()==tf*((Thr-D)/mass))#
m.Equation(mass.dt()==tf*(-Thr*(FuelFlow/60)))#
m.Equation(D==0.5*Ro*(V**2)*Cd*S)
m.Equation(FuelFlow==0.75882*(1+(V/2938.5)))
m.Equation(x*final<=1500)
m.Equation(T==T0-h)
# Objective Function
m.Obj(-mass*tf*final)#
m.options.IMODE = 6
m.options.NODES = 3
m.options.MV_TYPE = 1
m.options.SOLVER = 3
#m.open_folder() # to search for infeasibilities
m.solve()
tm = tm * tf.value[0]
print('Final Time: ' + str(tf.value[-1]))
print('Final Speed: ' + str(V.value[-1]))
print('Final X: ' + str(x.value[-1]))
plt.figure(1)
plt.subplot(2,1,1)
plt.plot(tm,Tcontr,'r-',LineWidth=2,label=r'$Tcontr$')
#plt.plot(m.time,x.value,'r--',LineWidth=2,label=r'$x$')
plt.legend(loc='best')
plt.subplot(2,1,2)
plt.plot(tm,x.value,'r--',LineWidth=2,label=r'$x$')
#plt.plot(tm,mass.value,'g:',LineWidth=2,label=r'$mass$')
#plt.plot(tm,D.value,'g:',LineWidth=2,label=r'$D$')
#plt.plot(tm,V.value,'b-',LineWidth=2,label=r'$V$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()
Tcontr
的下限阻止 x
值超过 1310。将下限值设置为 0.1 会将 x
的最终值提高到 2469.76 =15=] 已删除。
Tcontr = m.MV(value=0.2,lb=0.1,ub=1)
当解决方案不是最优的或存在不可行的解决方案时,约束通常是罪魁祸首。检测有问题的约束的一种方法是创建绘图以验证解决方案未被人为约束。
制定约束的另一种方法是结合使用硬约束 m.Equation((x-1500)*final==0)
和软约束来指导解决方案 m.Minimize(final*(x-1500)**2)
。正确设置硬约束很重要。 m.Equation(x*final==1500)
等约束意味着当 final 不等于 1 时,x*0==1500
是不可行的。不等式版本也可以更好地构成 m.Equation((x-1500)*final<=0)
,但原始形式也有效,因为 x*0<1500
.
import numpy as np
import matplotlib.pyplot as plt
from gekko import GEKKO
import math
#Gekko model
m = GEKKO(remote=False)
#Time points
nt = 11
tm = np.linspace(0,1,nt)
m.time = tm
# Variables
Ro = m.Const(value=1.1)
g = m.Const(value=9.80665)
T = m.Var()
T0 = m.Const(value=273)
S = m.Const(value=122.6)
Cd = m.Const(value=0.1)
FuelFlow = m.Var()
D = m.Var()
Thrmax = value=200000
Thr = m.Var()
V = m.Var()
nu = m.Var(value=0)
nuu = 0
x = m.Var(value=0)
h = m.Var(value=1000)
mass = m.Var(value=60000)
p = np.zeros(nt)
p[-1] = 1.0
final = m.Param(value=p)
m.options.MAX_ITER=1000 # iteration max number
#Fixed Variable
tf = m.FV(value=1,lb=0.15,ub=1000.0)
tf.STATUS = 1
# Parameters
Tcontr = m.MV(value=0.2,lb=0.1,ub=1)
Tcontr.STATUS = 1
Tcontr.DCOST = 0 #1e-2
# Equations
m.Equation(x.dt()==tf*(V*(math.cos(nuu))))#
m.Equation(Thr==Tcontr*Thrmax)
m.Equation(V.dt()==tf*((Thr-D)/mass))#
m.Equation(mass.dt()==tf*(-Thr*(FuelFlow/60)))#
m.Equation(D==0.5*Ro*(V**2)*Cd*S)
m.Equation(FuelFlow==0.75882*(1+(V/2938.5)))
m.Equation((x-1500)*final==0)
m.Equation(T==T0-h)
# Objective Function
m.Minimize(final*(x-1500)**2)
m.Maximize(mass*tf*final)#
m.options.IMODE = 6
m.options.NODES = 3
m.options.MV_TYPE = 1
m.options.SOLVER = 3
#m.open_folder() # to search for infeasibilities
m.solve()
tm = tm * tf.value[0]
print('Final Time: ' + str(tf.value[-1]))
print('Final Speed: ' + str(V.value[-1]))
print('Final X: ' + str(x.value[-1]))
plt.figure(1)
plt.subplot(2,1,1)
plt.plot(tm,Tcontr,'r-',lw=2,label=r'$Tcontr$')
#plt.plot(m.time,x.value,'r--',lw=2,label=r'$x$')
plt.legend(loc='best')
plt.subplot(2,1,2)
plt.plot(tm,x.value,'r--',lw=2,label=r'$x$')
#plt.plot(tm,mass.value,'g:',lw=2,label=r'$mass$')
#plt.plot(tm,D.value,'g:',lw=2,label=r'$D$')
#plt.plot(tm,V.value,'b-',lw=2,label=r'$V$')
plt.legend(loc='best')
plt.xlabel('Time')
plt.ylabel('Value')
plt.show()