如何在没有 SQL 查询的情况下使用 Spark Dataframe 检查是否相等?

How do I check for equality using Spark Dataframe without SQL Query?

我想要 select 一个等于特定值的列。我在 scala 中做这个,有点麻烦。

这是我的代码

df.select(df("state")==="TX").show()

这个 returns 带有布尔值的状态列,而不仅仅是 TX

我也试过了

df.select(df("state")=="TX").show() 

但这也不起作用。

你应该使用 whereselect 是一个投影 returns 语句的输出,因此你得到布尔值的原因。 where 是一个保持数据帧结构的过滤器,但只在过滤器工作的地方保留数据。

尽管如此,根据文档,您可以用 3 种不同的方式编写此代码

// The following are equivalent:
peopleDf.filter($"age" > 15)
peopleDf.where($"age" > 15)
peopleDf($"age" > 15)

我遇到了同样的问题,以下语法对我有用:

df.filter(df("state")==="TX").show()

我正在使用 Spark 1.6。

还有另一个简单的 sql 选项。使用下面的 Spark 1.6 也应该可以工作。

df.filter("state = 'TX'")

这是一种指定 sql 类似过滤器的新方法。有关受支持运算符的完整列表,请查看 this class.

df.filter($"state" like "T%%") 用于模式匹配

df.filter($"state" === "TX")df.filter("state = 'TX'") 相等

要得到否定,这样做...

df.filter(not( ..expression.. ))

例如

df.filter(not($"state" === "TX"))

我们可以在 Dataframe 中写入多个 Filter/where 条件。

例如:

table1_df
.filter($"Col_1_name" === "buddy")  // check for equal to string
.filter($"Col_2_name" === "A")
.filter(not($"Col_2_name".contains(" .sql")))  // filter a string which is    not relevent
.filter("Col_2_name is not null")   // no null filter
.take(5).foreach(println)

在 Spark V2 上工作。*

import sqlContext.implicits._
df.filter($"state" === "TX")

如果需要与变量(例如 var)进行比较:

import sqlContext.implicits._
df.filter($"state" === var)

Note : import sqlContext.implicits._

这是使用 spark2.2+ 在 json...

中获取数据的完整示例
val myjson = "[{\"name\":\"Alabama\",\"abbreviation\":\"AL\"},{\"name\":\"Alaska\",\"abbreviation\":\"AK\"},{\"name\":\"American Samoa\",\"abbreviation\":\"AS\"},{\"name\":\"Arizona\",\"abbreviation\":\"AZ\"},{\"name\":\"Arkansas\",\"abbreviation\":\"AR\"},{\"name\":\"California\",\"abbreviation\":\"CA\"},{\"name\":\"Colorado\",\"abbreviation\":\"CO\"},{\"name\":\"Connecticut\",\"abbreviation\":\"CT\"},{\"name\":\"Delaware\",\"abbreviation\":\"DE\"},{\"name\":\"District Of Columbia\",\"abbreviation\":\"DC\"},{\"name\":\"Federated States Of Micronesia\",\"abbreviation\":\"FM\"},{\"name\":\"Florida\",\"abbreviation\":\"FL\"},{\"name\":\"Georgia\",\"abbreviation\":\"GA\"},{\"name\":\"Guam\",\"abbreviation\":\"GU\"},{\"name\":\"Hawaii\",\"abbreviation\":\"HI\"},{\"name\":\"Idaho\",\"abbreviation\":\"ID\"},{\"name\":\"Illinois\",\"abbreviation\":\"IL\"},{\"name\":\"Indiana\",\"abbreviation\":\"IN\"},{\"name\":\"Iowa\",\"abbreviation\":\"IA\"},{\"name\":\"Kansas\",\"abbreviation\":\"KS\"},{\"name\":\"Kentucky\",\"abbreviation\":\"KY\"},{\"name\":\"Louisiana\",\"abbreviation\":\"LA\"},{\"name\":\"Maine\",\"abbreviation\":\"ME\"},{\"name\":\"Marshall Islands\",\"abbreviation\":\"MH\"},{\"name\":\"Maryland\",\"abbreviation\":\"MD\"},{\"name\":\"Massachusetts\",\"abbreviation\":\"MA\"},{\"name\":\"Michigan\",\"abbreviation\":\"MI\"},{\"name\":\"Minnesota\",\"abbreviation\":\"MN\"},{\"name\":\"Mississippi\",\"abbreviation\":\"MS\"},{\"name\":\"Missouri\",\"abbreviation\":\"MO\"},{\"name\":\"Montana\",\"abbreviation\":\"MT\"},{\"name\":\"Nebraska\",\"abbreviation\":\"NE\"},{\"name\":\"Nevada\",\"abbreviation\":\"NV\"},{\"name\":\"New Hampshire\",\"abbreviation\":\"NH\"},{\"name\":\"New Jersey\",\"abbreviation\":\"NJ\"},{\"name\":\"New Mexico\",\"abbreviation\":\"NM\"},{\"name\":\"New York\",\"abbreviation\":\"NY\"},{\"name\":\"North Carolina\",\"abbreviation\":\"NC\"},{\"name\":\"North Dakota\",\"abbreviation\":\"ND\"},{\"name\":\"Northern Mariana Islands\",\"abbreviation\":\"MP\"},{\"name\":\"Ohio\",\"abbreviation\":\"OH\"},{\"name\":\"Oklahoma\",\"abbreviation\":\"OK\"},{\"name\":\"Oregon\",\"abbreviation\":\"OR\"},{\"name\":\"Palau\",\"abbreviation\":\"PW\"},{\"name\":\"Pennsylvania\",\"abbreviation\":\"PA\"},{\"name\":\"Puerto Rico\",\"abbreviation\":\"PR\"},{\"name\":\"Rhode Island\",\"abbreviation\":\"RI\"},{\"name\":\"South Carolina\",\"abbreviation\":\"SC\"},{\"name\":\"South Dakota\",\"abbreviation\":\"SD\"},{\"name\":\"Tennessee\",\"abbreviation\":\"TN\"},{\"name\":\"Texas\",\"abbreviation\":\"TX\"},{\"name\":\"Utah\",\"abbreviation\":\"UT\"},{\"name\":\"Vermont\",\"abbreviation\":\"VT\"},{\"name\":\"Virgin Islands\",\"abbreviation\":\"VI\"},{\"name\":\"Virginia\",\"abbreviation\":\"VA\"},{\"name\":\"Washington\",\"abbreviation\":\"WA\"},{\"name\":\"West Virginia\",\"abbreviation\":\"WV\"},{\"name\":\"Wisconsin\",\"abbreviation\":\"WI\"},{\"name\":\"Wyoming\",\"abbreviation\":\"WY\"}]"
import spark.implicits._
val df = spark.read.json(Seq(myjson).toDS)
df.show 
   import spark.implicits._
    val df = spark.read.json(Seq(myjson).toDS)
    df.show

    scala> df.show
    +------------+--------------------+
    |abbreviation|                name|
    +------------+--------------------+
    |          AL|             Alabama|
    |          AK|              Alaska|
    |          AS|      American Samoa|
    |          AZ|             Arizona|
    |          AR|            Arkansas|
    |          CA|          California|
    |          CO|            Colorado|
    |          CT|         Connecticut|
    |          DE|            Delaware|
    |          DC|District Of Columbia|
    |          FM|Federated States ...|
    |          FL|             Florida|
    |          GA|             Georgia|
    |          GU|                Guam|
    |          HI|              Hawaii|
    |          ID|               Idaho|
    |          IL|            Illinois|
    |          IN|             Indiana|
    |          IA|                Iowa|
    |          KS|              Kansas|
    +------------+--------------------+

    // equals matching
    scala> df.filter(df("abbreviation") === "TX").show
    +------------+-----+
    |abbreviation| name|
    +------------+-----+
    |          TX|Texas|
    +------------+-----+
    // or using lit

    scala> df.filter(df("abbreviation") === lit("TX")).show
    +------------+-----+
    |abbreviation| name|
    +------------+-----+
    |          TX|Texas|
    +------------+-----+

    //not expression
    scala> df.filter(not(df("abbreviation") === "TX")).show
    +------------+--------------------+
    |abbreviation|                name|
    +------------+--------------------+
    |          AL|             Alabama|
    |          AK|              Alaska|
    |          AS|      American Samoa|
    |          AZ|             Arizona|
    |          AR|            Arkansas|
    |          CA|          California|
    |          CO|            Colorado|
    |          CT|         Connecticut|
    |          DE|            Delaware|
    |          DC|District Of Columbia|
    |          FM|Federated States ...|
    |          FL|             Florida|
    |          GA|             Georgia|
    |          GU|                Guam|
    |          HI|              Hawaii|
    |          ID|               Idaho|
    |          IL|            Illinois|
    |          IN|             Indiana|
    |          IA|                Iowa|
    |          KS|              Kansas|
    +------------+--------------------+
    only showing top 20 rows

在 Spark 2.4 中

与一个值比较:

df.filter(lower(trim($"col_name")) === "<value>").show()

与值 collection 比较:

df.filter($"col_name".isInCollection(new HashSet<>(Arrays.asList("value1", "value2")))).show()

让我们创建一个示例数据集,并深入研究 OP 代码不起作用的确切原因。

这是我们的示例数据:

val df = Seq(
  ("Rockets", 2, "TX"),
  ("Warriors", 6, "CA"),
  ("Spurs", 5, "TX"),
  ("Knicks", 2, "NY")
).toDF("team_name", "num_championships", "state")

我们可以使用 show() 方法漂亮地打印我们的数据集:

+---------+-----------------+-----+
|team_name|num_championships|state|
+---------+-----------------+-----+
|  Rockets|                2|   TX|
| Warriors|                6|   CA|
|    Spurs|                5|   TX|
|   Knicks|                2|   NY|
+---------+-----------------+-----+

让我们检查一下 df.select(df("state")==="TX").show() 的结果:

+------------+
|(state = TX)|
+------------+
|        true|
|       false|
|        true|
|       false|
+------------+

通过简单地附加一列更容易理解这个结果 - df.withColumn("is_state_tx", df("state")==="TX").show():

+---------+-----------------+-----+-----------+
|team_name|num_championships|state|is_state_tx|
+---------+-----------------+-----+-----------+
|  Rockets|                2|   TX|       true|
| Warriors|                6|   CA|      false|
|    Spurs|                5|   TX|       true|
|   Knicks|                2|   NY|      false|
+---------+-----------------+-----+-----------+

OP 尝试的其他代码 (df.select(df("state")=="TX").show()) returns 此错误:

<console>:27: error: overloaded method value select with alternatives:
  [U1](c1: org.apache.spark.sql.TypedColumn[org.apache.spark.sql.Row,U1])org.apache.spark.sql.Dataset[U1] <and>
  (col: String,cols: String*)org.apache.spark.sql.DataFrame <and>
  (cols: org.apache.spark.sql.Column*)org.apache.spark.sql.DataFrame
 cannot be applied to (Boolean)
       df.select(df("state")=="TX").show()
          ^

=== 运算符在 Column class 中定义。列 class 未定义 == 运算符,这就是此代码出错的原因。

这是有效的公认答案:

df.filter(df("state")==="TX").show()

+---------+-----------------+-----+
|team_name|num_championships|state|
+---------+-----------------+-----+
|  Rockets|                2|   TX|
|    Spurs|                5|   TX|
+---------+-----------------+-----+

正如其他发帖人所提到的,=== 方法采用 Any 类型的参数,因此这不是唯一有效的解决方案。这也适用于例如:

df.filter(df("state") === lit("TX")).show

+---------+-----------------+-----+
|team_name|num_championships|state|
+---------+-----------------+-----+
|  Rockets|                2|   TX|
|    Spurs|                5|   TX|
+---------+-----------------+-----+

equalTo的方法也可以使用:

df.filter(df("state").equalTo("TX")).show()

+---------+-----------------+-----+
|team_name|num_championships|state|
+---------+-----------------+-----+
|  Rockets|                2|   TX|
|    Spurs|                5|   TX|
+---------+-----------------+-----+

值得详细研究这个例子。 Scala 的语法有时看起来很神奇,尤其是在调用没有点符号的方法时。未经训练的人很难看出 ===Column class!

中定义的方法