pytorch 改变输入图像大小
pytorch change input image size
我是 pytorch 的新手,我正在学习教程,但是当我尝试修改代码以使用 64x64x3 图像而不是 32x32x3 图像时,我遇到了很多错误。这是教程中的代码:
import torch
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Resize(32),
transforms.RandomCrop(32),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = ImageFolder("Train", transform=transform)
trainloader = DataLoader(trainset, shuffle=True, batch_size=batch_size, num_workers=0)
classes = ('Dog', 'Cat')
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size)))
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
print("training started")
from tqdm import tqdm
for epoch in range(5): # loop over the dataset multiple times
running_loss = 0.0
for i, data in tqdm(enumerate(trainloader, 0), desc=f"epoch: {epoch + 1}"):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
PATH = './net.pth'
torch.save(net.state_dict(), PATH)
如果我将“transforms.Resize(32)”和“transforms.RandomCrop(32)”更改为 64(以获得 64x64x3 图像),我会收到此错误
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
~\Documents\pyth\classifier\train_classifier.py in <module>
86
87 # forward + backward + optimize
---> 88 outputs = net(inputs)
89 loss = criterion(outputs, labels)
90 loss.backward()
~\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
~\Documents\pyth\classifier\train_classifier.py in forward(self, x)
57 x = self.pool(F.relu(self.conv1(x)))
58 x = self.pool(F.relu(self.conv2(x)))
---> 59 x = x.view(-1, 10816+1)
60 x = F.relu(self.fc1(x))
61 x = F.relu(self.fc2(x))
RuntimeError: shape '[-1, 10817]' is invalid for input of size 10816
´´´
and if i try to change the parameters of ´x.view(...)´ i get this error
´´´
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
~\Documents\pyth\classifier\train_classifier.py in <module>
86
87 # forward + backward + optimize
---> 88 outputs = net(inputs)
89 loss = criterion(outputs, labels)
90 loss.backward()
~\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
~\Documents\pyth\classifier\train_classifier.py in forward(self, x)
58 x = self.pool(F.relu(self.conv2(x)))
59 x = x.view(-1, 16 * 2 * 5 * 5)
---> 60 x = F.relu(self.fc1(x))
61 x = F.relu(self.fc2(x))
62 x = self.fc3(x)
~\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
~\Anaconda3\lib\site-packages\torch\nn\modules\linear.py in forward(self, input)
92
93 def forward(self, input: Tensor) -> Tensor:
---> 94 return F.linear(input, self.weight, self.bias)
95
96 def extra_repr(self) -> str:
~\Anaconda3\lib\site-packages\torch\nn\functional.py in linear(input, weight, bias)
1751 if has_torch_function_variadic(input, weight):
1752 return handle_torch_function(linear, (input, weight), input, weight, bias=bias)
-> 1753 return torch._C._nn.linear(input, weight, bias)
1754
1755
RuntimeError: mat1 and mat2 shapes cannot be multiplied (2x800 and 400x120)
´´´
我认为这应该可行,因为在执行第二次池化操作后,输出特征图为 N x C x 13 x 13
self.fc1 = nn.Linear(16 * 13 * 13, 120)
x = x.view(-1, 16 * 13 * 13)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 13 * 13, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 13 * 13)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
我是 pytorch 的新手,我正在学习教程,但是当我尝试修改代码以使用 64x64x3 图像而不是 32x32x3 图像时,我遇到了很多错误。这是教程中的代码:
import torch
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Resize(32),
transforms.RandomCrop(32),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
batch_size = 4
trainset = ImageFolder("Train", transform=transform)
trainloader = DataLoader(trainset, shuffle=True, batch_size=batch_size, num_workers=0)
classes = ('Dog', 'Cat')
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
# get some random training images
dataiter = iter(trainloader)
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size)))
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
print("training started")
from tqdm import tqdm
for epoch in range(5): # loop over the dataset multiple times
running_loss = 0.0
for i, data in tqdm(enumerate(trainloader, 0), desc=f"epoch: {epoch + 1}"):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
PATH = './net.pth'
torch.save(net.state_dict(), PATH)
如果我将“transforms.Resize(32)”和“transforms.RandomCrop(32)”更改为 64(以获得 64x64x3 图像),我会收到此错误
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
~\Documents\pyth\classifier\train_classifier.py in <module>
86
87 # forward + backward + optimize
---> 88 outputs = net(inputs)
89 loss = criterion(outputs, labels)
90 loss.backward()
~\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
~\Documents\pyth\classifier\train_classifier.py in forward(self, x)
57 x = self.pool(F.relu(self.conv1(x)))
58 x = self.pool(F.relu(self.conv2(x)))
---> 59 x = x.view(-1, 10816+1)
60 x = F.relu(self.fc1(x))
61 x = F.relu(self.fc2(x))
RuntimeError: shape '[-1, 10817]' is invalid for input of size 10816
´´´
and if i try to change the parameters of ´x.view(...)´ i get this error
´´´
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
~\Documents\pyth\classifier\train_classifier.py in <module>
86
87 # forward + backward + optimize
---> 88 outputs = net(inputs)
89 loss = criterion(outputs, labels)
90 loss.backward()
~\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
~\Documents\pyth\classifier\train_classifier.py in forward(self, x)
58 x = self.pool(F.relu(self.conv2(x)))
59 x = x.view(-1, 16 * 2 * 5 * 5)
---> 60 x = F.relu(self.fc1(x))
61 x = F.relu(self.fc2(x))
62 x = self.fc3(x)
~\Anaconda3\lib\site-packages\torch\nn\modules\module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
~\Anaconda3\lib\site-packages\torch\nn\modules\linear.py in forward(self, input)
92
93 def forward(self, input: Tensor) -> Tensor:
---> 94 return F.linear(input, self.weight, self.bias)
95
96 def extra_repr(self) -> str:
~\Anaconda3\lib\site-packages\torch\nn\functional.py in linear(input, weight, bias)
1751 if has_torch_function_variadic(input, weight):
1752 return handle_torch_function(linear, (input, weight), input, weight, bias=bias)
-> 1753 return torch._C._nn.linear(input, weight, bias)
1754
1755
RuntimeError: mat1 and mat2 shapes cannot be multiplied (2x800 and 400x120)
´´´
我认为这应该可行,因为在执行第二次池化操作后,输出特征图为 N x C x 13 x 13
self.fc1 = nn.Linear(16 * 13 * 13, 120)
x = x.view(-1, 16 * 13 * 13)
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 13 * 13, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 13 * 13)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x