如何计算r中两年的移动平均值

How to calculate moving average for two years in r

我有一个关于并购 (M&As) 的大数据框(90 万行)。

df有四列:日期(并购完成时),target_nation(其中一家公司国家是 merged/acquired),acquiror_nation(哪个国家的公司是收购方),以及 big_corp (无论收购方是否为大公司,TRUE 表示该公司为大公司)。

这是我的 df 示例:

> df <- structure(list(date = c(2000L, 2000L, 2001L, 2001L, 2001L, 2002L, 
2002L, 2002L), target_nation = c("Uganda", "Uganda", "Uganda", 
"Uganda", "Uganda", "Uganda", "Uganda", "Uganda"), acquiror_nation = c("France", 
"Germany", "France", "France", "Germany", "France", "France", 
"Germany"), big_corp_TF = c(TRUE, FALSE, TRUE, FALSE, FALSE, 
TRUE, TRUE, TRUE)), row.names = c(NA, -8L))

> df 

   date target_nation acquiror_nation big_corp_TF
1: 2000        Uganda          France        TRUE
2: 2000        Uganda         Germany       FALSE
3: 2001        Uganda          France        TRUE
4: 2001        Uganda          France       FALSE
5: 2001        Uganda         Germany       FALSE
6: 2002        Uganda          France        TRUE
7: 2002        Uganda          France        TRUE
8: 2002        Uganda         Germany        TRUE

根据这些数据,我想创建一个新变量来表示特定收购国的大公司完成的并购份额,计算 2 年的平均值。(对于我的实际练习,我将计算 5 年的平均值,但让我们在这里让事情更简单)。所以法国的大企业会有新的变量,德国的大企业也会有新的变量

到目前为止,我设法做到的是 1) 计算特定年份的特定 target_nation 中的并购总数; 2) 统计某acquiror_nation某大公司在某年某某target_nation的并购总数。我加入了这两个df,方便计算我想要的平均值。这是我使用的代码和生成的新 df:

##counting total rows for target nations
df2 <- df %>%
 group_by(date, target_nation) %>%
 count(target_nation)

##counting total rows conducted by small or big corps for certain acquiror nations

df3 <- df %>%
  group_by(date, target_nation, acquiror_nation) %>%
  count(big_corp_TF)

##selecting rows that were conducted by big corps

df33 <- df3 %>%
  filter(big_corp_TF == TRUE)

##merging df2 and df33

df4 <- df2 %>%
  left_join(df33, by = c("date" = "date", "target_nation" = "target_nation"))

df4 <- as.data.frame(df4)

> df4

  date target_nation n.x acquiror_nation big_corp_TF n.y
1 2000        Uganda   2          France        TRUE   1
2 2001        Uganda   3          France        TRUE   1
3 2002        Uganda   3          France        TRUE   2
4 2002        Uganda   3         Germany        TRUE   1

n.x这里是某一年特定target_nation的并购总数(行); n.y 是特定 acquiror_nation 的大公司在某个 target_nation.

进行的并购总数(行)

有了这个新的数据框 df4,我现在可以很容易地计算出特定 acquiror_nation 的大公司在特定年份的特定 target_nation 中进行的并购所占的份额。例如,让我们算一下法国的这个份额:

df5 <- df4 %>% 
  filter(acquiror_nation == "France") %>%
  mutate(France_bigcorp_share_1year = n.y / n.x)

  date target_nation n.x acquiror_nation big_corp_TF n.y France_bigcorp_share_1year
1 2000        Uganda   2          France        TRUE   1                  0.5000000
2 2001        Uganda   3          France        TRUE   1                  0.3333333
3 2002        Uganda   3          France        TRUE   2                  0.6666667

但是,我无法弄清楚如何计算特定收购国的大公司完成的并购份额,计算 2 年的平均值。

这是所需变量的样子:

  date target_nation n.x acquiror_nation big_corp_TF n.y France_bigcorp_share_2years
1 2000        Uganda   2          France        TRUE   1                  0.5000000
2 2001        Uganda   3          France        TRUE   1                  0.4000000
3 2002        Uganda   3          France        TRUE   2                  0.5000000

请注意,2000 年的份额将保持不变,因为没有前一年使其成为 2 年的平均值;对于 2001 年,它将变为 0.4(因为 (1+1)/(2+3) = 0.4);对于 2002 年,它将变为 0.5(因为 (1+2)/(3+3) = 0.5)。

你知道如何编写计算两年平均份额的代码吗?我想我需要在这里使用 for 循环,但我不知道如何使用。如有任何建议,我们将不胜感激。

--

编辑: AnilGoyal 的代码与示例数据完美配合,但我的实际数据显然更加混乱,因此我想知道是否有解决我遇到的问题的方法。

我的实际数据集有时会跳过一年,或者有时不包括前几行中包含的 acquiror_nation。请查看我的实际数据的更准确样本:

> df_new <- structure(list(date = c(2000L, 2000L, 2001L, 2001L, 2001L, 2002L, 
2002L, 2002L, 2003L, 2003L, 2004L, 2004L, 2004L, 2006L, 2006L
), target_nation = c("Uganda", "Uganda", "Uganda", "Uganda", 
"Uganda", "Uganda", "Uganda", "Uganda", "Uganda", "Uganda", "Uganda", 
"Uganda", "Uganda", "Uganda", "Uganda"), acquiror_nation = c("France", 
"Germany", "France", "France", "Germany", "France", "France", 
"Germany", "Germany", "Germany", "France", "France", "Germany", 
"France", "France"), big_corp_TF = c(TRUE, FALSE, TRUE, FALSE, FALSE, 
TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE)), row.names = c(NA, 
-15L))

> df_new 

    date target_nation acquiror_nation big_corp_TF
 1: 2000        Uganda          France     TRUE
 2: 2000        Uganda         Germany    FALSE
 3: 2001        Uganda          France     TRUE
 4: 2001        Uganda          France    FALSE
 5: 2001        Uganda         Germany    FALSE
 6: 2002        Uganda          France     TRUE
 7: 2002        Uganda          France     TRUE
 8: 2002        Uganda         Germany     TRUE
 9: 2003        Uganda         Germany     TRUE
10: 2003        Uganda         Germany    FALSE
11: 2004        Uganda          France     TRUE
12: 2004        Uganda          France    FALSE
13: 2004        Uganda         Germany     TRUE
14: 2006        Uganda          France     TRUE
15: 2006        Uganda          France     TRUE

注意:2003 年法国没有行;并且没有 2005 年。

如果我运行 Anil的第一个代码,结果是下面的tibble:

   date target_nation acquiror_nation    n1    n2 share
  <int> <chr>         <chr>           <dbl> <int> <dbl>
1  2000 Uganda        France              2     1   0.5
2  2001 Uganda        France              3     1   0.4
3  2002 Uganda        France              3     2   0.5
4  2004 Uganda        France              3     1   0.5
5  2006 Uganda        France              2     2   0.6

注意:法国没有 2003 年和 2005 年的结果;我希望有 2003 年和 2005 年的结果(因为我们正在计算 2 年的平均值,因此我们应该能够获得 2003 年和 2005 年的结果)。另外,2006年的份额实际上是不正确的,因为它应该是1(它应该取2005年的值(为0)而不是2004年的值来计算平均值)。

我希望能够收到以下小标题:

       date target_nation acquiror_nation    n1    n2 share
      <int> <chr>         <chr>           <dbl> <int> <dbl>
    1  2000 Uganda        France              2     1   0.5
    2  2001 Uganda        France              3     1   0.4
    3  2002 Uganda        France              3     2   0.5
    4  2003 Uganda        France              2     0   0.4
    5  2004 Uganda        France              3     1   0.2
    6  2005 Uganda        France              0     0   0.33
    7  2006 Uganda        France              2     2   1.0

注意:请注意 2006 年的结果也有所不同(因为我们现在采用 2005 年而不是 2004 年的 two-year 平均值)。

您认为有可能找到一种方法来输出所需的小标题吗?我知道这是原始数据的问题:它只是缺少某些数据点。然而,将它们包含到原始数据集中似乎非常不方便;最好包括它们 mid-way,例如在计算了 n1 和 n2 之后。但是最方便的方法是什么?

EDIT2: Anil 的新代码可以很好地处理上面的数据样本,但是 运行 在处理更复杂的数据样本(即包括多个 target_nation)。这是一个更短但更复杂的数据示例:

> df_new_complex <- structure(list(date = c(2000L, 2000L, 2001L, 2001L, 2001L, 2003L, 
2003L, 1999L, 2001L, 2002L, 2002L), target_nation = c("Uganda", 
"Uganda", "Uganda", "Uganda", "Uganda", "Uganda", "Uganda", "Mozambique", 
"Mozambique", "Mozambique", "Mozambique"), acquiror_nation = c("France", 
"Germany", "France", "France", "Germany", "Germany", "Germany", 
"Germany", "France", "France", "Germany"), big_corp_TF = c(TRUE, 
FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, FALSE, TRUE
)), row.names = c(NA, -11L))

> df_new_complex 

date target_nation acquiror_nation big_corp_TF
 1: 2000        Uganda          France        TRUE
 2: 2000        Uganda         Germany       FALSE
 3: 2001        Uganda          France        TRUE
 4: 2001        Uganda          France       FALSE
 5: 2001        Uganda         Germany       FALSE
 6: 2003        Uganda         Germany        TRUE
 7: 2003        Uganda         Germany       FALSE
 8: 1999    Mozambique         Germany       FALSE
 9: 2001    Mozambique          France        TRUE
10: 2002    Mozambique          France       FALSE
11: 2002    Mozambique         Germany        TRUE

如您所见,此数据样本包含两个 target_nation。 Anil 的代码,其中 param <- c("France", "Germany"),产生以下小标题:

    date target_nation acquiror_nation    n1    n2 share
   <dbl> <chr>         <chr>           <dbl> <int> <dbl>
 1  1999 Mozambique    France              1     0 0    
 2  1999 Mozambique    Germany             1     0 0    
 3  1999 Uganda        France              0     0 0    
 4  1999 Uganda        Germany             0     0 0    
 5  2000 Mozambique    France              0     0 0    
 6  2000 Mozambique    Germany             0     0 0    
 7  2000 Uganda        France              2     1 0.25 
 8  2000 Uganda        Germany             2     0 0.167
 9  2001 Mozambique    France              1     1 0.4  
10  2001 Mozambique    Germany             1     0 0.333
11  2001 Uganda        France              3     1 0.333
12  2001 Uganda        Germany             3     0 0.25 
13  2002 Mozambique    France              2     0 0.2  
14  2002 Mozambique    Germany             2     1 0.25 
15  2002 Uganda        France              0     0 0.25 
16  2002 Uganda        Germany             0     0 0.25 
17  2003 Mozambique    France              0     0 0.25 
18  2003 Mozambique    Germany             0     0 0.25 
19  2003 Uganda        France              2     0 0.167
20  2003 Uganda        Germany             2     1 0.25 

这里不希望看到代码为乌干达创建了 1999 年,为莫桑比克创建了 2003 年(后者不是什么大问题)。在 1999 年,乌干达没有投资,如数据样本中所示,因此为其提供数值是没有意义的(它可能有 NA,或者根本没有)。莫桑比克在 2003 年也没有投资,所以我不想计算莫桑比克当年的份额。

我找到了一个解决方法,我在代码的早期过滤了一个特定的目标国家,就像这样:

correct1 <- df_new_complex %>% 
  filter(target_nation == "Mozambique") %>%
  mutate(d = 1) %>% ...

#I do the same for another target_nation

correct2 <- df_new_complex %>% 
  filter(target_nation == "Uganda") %>%
  mutate(d = 1) %>% ...

#I then use rbind

correct <- rbind(correct1, correct2)

#which produces the desired tibble (without a year 2003 for Mozambique and 1999 for Uganda).

> correct 

date target_nation acquiror_nation    n1    n2 share
   <dbl> <chr>         <chr>           <dbl> <int> <dbl>
 1  1999 Mozambique    France              1     0 0    
 2  1999 Mozambique    Germany             1     0 0    
 3  2000 Mozambique    France              0     0 0    
 4  2000 Mozambique    Germany             0     0 0    
 5  2001 Mozambique    France              1     1 1    
 6  2001 Mozambique    Germany             1     0 0 
 7  2002 Mozambique    France              2     0 0.33 
 8  2002 Mozambique    Germany             2     1 0.333
 9  2000 Uganda        France              2     1 0.5  
10  2000 Uganda        Germany             2     0 0.25 
11  2001 Uganda        France              3     1 0.286
12  2001 Uganda        Germany             3     0 0.2  
13  2002 Uganda        France              0     0 0.167
14  2002 Uganda        Germany             0     0 0.167
15  2003 Uganda        France              2     0 0    
16  2003 Uganda        Germany             2     1 0.25 

执行此操作的更快方法是什么?我有一个所需 target_nation 的列表。也许可以创建一个循环,我可以计算一个 target_nation,然后计算另一个;然后绑定他们;然后是另一个;然后是rbind等。还是有更好的方法?

使用包 runner 你可以做这样的事情

df <- structure(list(date = c(2000L, 2000L, 2001L, 2001L, 2001L, 2002L, 
                              2002L, 2002L), target_nation = c("Uganda", "Uganda", "Uganda", 
                                                               "Uganda", "Uganda", "Uganda", "Uganda", "Uganda"), acquiror_nation = c("France", 
                                                                                                                                      "Germany", "France", "France", "Germany", "France", "France", 
                                                                                                                                      "Germany"), big_corp_TF = c(TRUE, FALSE, TRUE, FALSE, FALSE, 
                                                                                                                                                                  TRUE, TRUE, TRUE)), row.names = c(NA, -8L))

library(runner)
library(tidyverse)
df <- df %>% as.data.frame()
param <- 'France'
df %>% 
  group_by(date, target_nation) %>%
  mutate(n1 = n()) %>%
  group_by(date, target_nation, acquiror_nation) %>%
  summarise(n1 = mean(n1),
            n2 = sum(big_corp_TF), .groups = 'drop') %>%
  filter(acquiror_nation == param) %>%
  mutate(share = sum_run(n2, k=2)/sum_run(n1, k=2))
#> # A tibble: 3 x 6
#>    date target_nation acquiror_nation    n1    n2 share
#>   <int> <chr>         <chr>           <dbl> <int> <dbl>
#> 1  2000 Uganda        France              2     1   0.5
#> 2  2001 Uganda        France              3     1   0.4
#> 3  2002 Uganda        France              3     2   0.5

甚至你也可以同时为所有国家做事


df %>% 
  group_by(date, target_nation) %>%
  mutate(n1 = n()) %>%
  group_by(date, target_nation, acquiror_nation) %>%
  summarise(n1 = mean(n1),
            n2 = sum(big_corp_TF), .groups = 'drop') %>%
  group_by(acquiror_nation) %>%
  mutate(share = sum_run(n2, k=2)/sum_run(n1, k=2))
#> # A tibble: 6 x 6
#> # Groups:   acquiror_nation [2]
#>    date target_nation acquiror_nation    n1    n2 share
#>   <int> <chr>         <chr>           <dbl> <int> <dbl>
#> 1  2000 Uganda        France              2     1 0.5  
#> 2  2000 Uganda        Germany             2     0 0    
#> 3  2001 Uganda        France              3     1 0.4  
#> 4  2001 Uganda        Germany             3     0 0    
#> 5  2002 Uganda        France              3     2 0.5  
#> 6  2002 Uganda        Germany             3     1 0.167

鉴于修改后的场景,你需要做两件事-

  • 在两个 sum_run 函数中包含参数 idx = date。这将根据需要更正输出,但不会包括缺少 rows/years.
  • 的份额
  • 要包括缺失的年份,您需要 tidyr::complete 如下所示-
param <- 'France'
df_new %>% 
  mutate(d = 1) %>%
  complete(date = seq(min(date), max(date), 1), nesting(target_nation, acquiror_nation),
           fill = list(d =0, big_corp_TF = FALSE)) %>%
  group_by(date, target_nation) %>%
  mutate(n1 = sum(d)) %>%
  group_by(date, target_nation, acquiror_nation) %>%
  summarise(n1 = mean(n1),
            n2 = sum(big_corp_TF), .groups = 'drop') %>%
  filter(acquiror_nation == param) %>%
  mutate(share = sum_run(n2, k=2, idx = date)/sum_run(n1, k=2, idx = date))

# A tibble: 7 x 6
   date target_nation acquiror_nation    n1    n2 share
  <dbl> <chr>         <chr>           <dbl> <int> <dbl>
1  2000 Uganda        France              2     1 0.5  
2  2001 Uganda        France              3     1 0.4  
3  2002 Uganda        France              3     2 0.5  
4  2003 Uganda        France              2     0 0.4  
5  2004 Uganda        France              3     1 0.2  
6  2005 Uganda        France              0     0 0.333
7  2006 Uganda        France              2     2 1

与上面类似,您可以一次对所有国家执行此操作(替换过滤器 group_by)

df_new %>% 
  mutate(d = 1) %>%
  complete(date = seq(min(date), max(date), 1), nesting(target_nation, acquiror_nation),
           fill = list(d =0, big_corp_TF = FALSE)) %>%
  group_by(date, target_nation) %>%
  mutate(n1 = sum(d)) %>%
  group_by(date, target_nation, acquiror_nation) %>%
  summarise(n1 = mean(n1),
            n2 = sum(big_corp_TF), .groups = 'drop') %>%
  group_by(acquiror_nation) %>%
  mutate(share = sum_run(n2, k=2, idx = date)/sum_run(n1, k=2, idx = date))

# A tibble: 14 x 6
# Groups:   acquiror_nation [2]
    date target_nation acquiror_nation    n1    n2 share
   <dbl> <chr>         <chr>           <dbl> <int> <dbl>
 1  2000 Uganda        France              2     1 0.5  
 2  2000 Uganda        Germany             2     0 0    
 3  2001 Uganda        France              3     1 0.4  
 4  2001 Uganda        Germany             3     0 0    
 5  2002 Uganda        France              3     2 0.5  
 6  2002 Uganda        Germany             3     1 0.167
 7  2003 Uganda        France              2     0 0.4  
 8  2003 Uganda        Germany             2     1 0.4  
 9  2004 Uganda        France              3     1 0.2  
10  2004 Uganda        Germany             3     1 0.4  
11  2005 Uganda        France              0     0 0.333
12  2005 Uganda        Germany             0     0 0.333
13  2006 Uganda        France              2     2 1    
14  2006 Uganda        Germany             2     0 0

进一步编辑

  • 这很容易。从 nesting 中删除 target_nation 并在 complete.
  • 之前添加一个 group_by

简单。是不是

df_new_complex %>%
  mutate(d = 1) %>%
  group_by(target_nation) %>%
  complete(date = seq(min(date), max(date), 1), nesting(acquiror_nation),
           fill = list(d =0, big_corp_TF = FALSE)) %>%
  group_by(date, target_nation) %>%
  mutate(n1 = sum(d)) %>%
  group_by(date, target_nation, acquiror_nation) %>%
  summarise(n1 = mean(n1),
            n2 = sum(big_corp_TF), .groups = 'drop') %>%
  group_by(acquiror_nation) %>%
  mutate(share = sum_run(n2, k=2)/sum_run(n1, k=2))

# A tibble: 16 x 6
# Groups:   acquiror_nation [2]
    date target_nation acquiror_nation    n1    n2 share
   <dbl> <chr>         <chr>           <dbl> <int> <dbl>
 1  1999 Mozambique    France              1     0 0    
 2  1999 Mozambique    Germany             1     0 0    
 3  2000 Mozambique    France              0     0 0    
 4  2000 Mozambique    Germany             0     0 0    
 5  2000 Uganda        France              2     1 0.5  
 6  2000 Uganda        Germany             2     0 0    
 7  2001 Mozambique    France              1     1 0.667
 8  2001 Mozambique    Germany             1     0 0    
 9  2001 Uganda        France              3     1 0.5  
10  2001 Uganda        Germany             3     0 0    
11  2002 Mozambique    France              2     0 0.2  
12  2002 Mozambique    Germany             2     1 0.2  
13  2002 Uganda        France              0     0 0    
14  2002 Uganda        Germany             0     0 0.5  
15  2003 Uganda        France              2     0 0    
16  2003 Uganda        Germany             2     1 0.5 

我注意到你已经删除了原来的问题。

在我的解决方案中,即使没有行 2003 和 2005,我也可以直接计算 bigcorp_share_2years

library(data.table)
df_new <- structure(list(date = c(2000L, 2000L, 2001L, 2001L, 2001L, 2002L, 
2002L, 2002L, 2003L, 2003L, 2004L, 2004L, 2004L, 2006L, 2006L
), target_nation = c("Uganda", "Uganda", "Uganda", "Uganda", 
"Uganda", "Uganda", "Uganda", "Uganda", "Uganda", "Uganda", "Uganda", 
"Uganda", "Uganda", "Uganda", "Uganda"), acquiror_nation = c("France", 
"Germany", "France", "France", "Germany", "France", "France", 
"Germany", "Germany", "Germany", "France", "France", "Germany", 
"France", "France"), big_corp_TF = c(TRUE, FALSE, TRUE, FALSE, FALSE, 
TRUE, TRUE, TRUE, TRUE, FALSE, TRUE, FALSE, TRUE, TRUE, TRUE)), row.names = c(NA, 
-15L))
setDT(df_new)

# NY is the total observation number for two consecutive years.
this = 0
df_new[, NR  := .N,by = date] # NR is each group's length
df_new[, NY  := { last = this; this = last(NR); last + this }, by = date]
# special deal with single year, e.g. 2006.
df_new[, NY  := ifelse( (date - 1) %in% date, NY, NR)]

# snx: count big_corp_TF for acquiror_nation, which will be used to calculate NX
df_new[, snx := sum(big_corp_TF), by = .(date,acquiror_nation)]

# df2: remove column big_crop_TF for unique operation
df2 <- df_new[,c(1:3,5:7)][,unique(.SD)]

# roll count for two consecutive years
df2[, NX := frollsum(snx,2),by=.(acquiror_nation)]
df2[, NX := ifelse( (date - 1) %in% date, NX, snx),acquiror_nation][]
#>     date target_nation acquiror_nation NR NY snx NX
#>  1: 2000        Uganda          France  2  2   1  1
#>  2: 2000        Uganda         Germany  2  2   0  0
#>  3: 2001        Uganda          France  3  5   1  2
#>  4: 2001        Uganda         Germany  3  5   0  0
#>  5: 2002        Uganda          France  3  6   2  3
#>  6: 2002        Uganda         Germany  3  6   1  1
#>  7: 2003        Uganda         Germany  2  5   1  2
#>  8: 2004        Uganda          France  3  5   1  1
#>  9: 2004        Uganda         Germany  3  5   1  2
#> 10: 2006        Uganda          France  2  2   2  2

df2[, bigcorp_share_2years := NX/NY]
df2[, .(date,target_nation,NY,NX,bigcorp_share_2years),by=.(acquiror_nation)]
#>     acquiror_nation date target_nation NY NX bigcorp_share_2years
#>  1:          France 2000        Uganda  2  1            0.5000000
#>  2:          France 2001        Uganda  5  2            0.4000000
#>  3:          France 2002        Uganda  6  3            0.5000000
#>  4:          France 2004        Uganda  5  1            0.2000000
#>  5:          France 2006        Uganda  2  2            1.0000000
#>  6:         Germany 2000        Uganda  2  0            0.0000000
#>  7:         Germany 2001        Uganda  5  0            0.0000000
#>  8:         Germany 2002        Uganda  6  1            0.1666667
#>  9:         Germany 2003        Uganda  5  2            0.4000000
#> 10:         Germany 2004        Uganda  5  2            0.4000000

reprex package (v2.0.0)

于 2021-05-03 创建