RuntimeError: Given groups=1, weight of size [32, 1, 5, 5], expected input[256, 3, 256, 256] to have 1 channels, but got 3 channels instead
RuntimeError: Given groups=1, weight of size [32, 1, 5, 5], expected input[256, 3, 256, 256] to have 1 channels, but got 3 channels instead
我正在尝试 运行 以下代码,但出现错误:
import torch.nn as nn
import torch.nn.functional as F
class EmbeddingNet(nn.Module):
def __init__(self):
super(EmbeddingNet, self).__init__()
self.convnet = nn.Sequential(nn.Conv2d(1, 32, 5), nn.PReLU(),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(32, 64, 5), nn.PReLU(),
nn.MaxPool2d(2, stride=2))
self.fc = nn.Sequential(nn.Linear(64 * 4 * 4, 256),
nn.PReLU(),
nn.Linear(256, 256),
nn.PReLU(),
nn.Linear(256, 2)
)
def forward(self, x):
output = self.convnet(x)
output = output.view(output.size()[0], -1)
output = self.fc(output)
return output
def get_embedding(self, x):
return self.forward(x)
class EmbeddingNetL2(EmbeddingNet):
def __init__(self):
super(EmbeddingNetL2, self).__init__()
def forward(self, x):
output = super(EmbeddingNetL2, self).forward(x)
output /= output.pow(2).sum(1, keepdim=True).sqrt()
return output
def get_embedding(self, x):
return self.forward(x)'''enter code here
错误很简单。它说你给了 3 个通道图像而不是 1 个通道。
一个更改将在此块中
class EmbeddingNet(nn.Module):
def __init__(self):
super(EmbeddingNet, self).__init__()
self.convnet = nn.Sequential(nn.Conv2d(3, 32, 5), #instead of 1 i have made it 3
nn.PReLU(),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(32, 64, 5), nn.PReLU(),
nn.MaxPool2d(2, stride=2))
self.fc = nn.Sequential(nn.Linear(64 * 4 * 4, 256),
nn.PReLU(),
nn.Linear(256, 256),
nn.PReLU(),
nn.Linear(256, 2)
)
编辑下一个错误:
改成这个
self.fc = nn.Sequential(nn.Linear(64 * 61 * 61, 256), #here is the change
nn.PReLU(),
nn.Linear(256, 256),
nn.PReLU(),
nn.Linear(256, 2)
)
我正在尝试 运行 以下代码,但出现错误:
import torch.nn as nn
import torch.nn.functional as F
class EmbeddingNet(nn.Module):
def __init__(self):
super(EmbeddingNet, self).__init__()
self.convnet = nn.Sequential(nn.Conv2d(1, 32, 5), nn.PReLU(),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(32, 64, 5), nn.PReLU(),
nn.MaxPool2d(2, stride=2))
self.fc = nn.Sequential(nn.Linear(64 * 4 * 4, 256),
nn.PReLU(),
nn.Linear(256, 256),
nn.PReLU(),
nn.Linear(256, 2)
)
def forward(self, x):
output = self.convnet(x)
output = output.view(output.size()[0], -1)
output = self.fc(output)
return output
def get_embedding(self, x):
return self.forward(x)
class EmbeddingNetL2(EmbeddingNet):
def __init__(self):
super(EmbeddingNetL2, self).__init__()
def forward(self, x):
output = super(EmbeddingNetL2, self).forward(x)
output /= output.pow(2).sum(1, keepdim=True).sqrt()
return output
def get_embedding(self, x):
return self.forward(x)'''enter code here
错误很简单。它说你给了 3 个通道图像而不是 1 个通道。
一个更改将在此块中
class EmbeddingNet(nn.Module):
def __init__(self):
super(EmbeddingNet, self).__init__()
self.convnet = nn.Sequential(nn.Conv2d(3, 32, 5), #instead of 1 i have made it 3
nn.PReLU(),
nn.MaxPool2d(2, stride=2),
nn.Conv2d(32, 64, 5), nn.PReLU(),
nn.MaxPool2d(2, stride=2))
self.fc = nn.Sequential(nn.Linear(64 * 4 * 4, 256),
nn.PReLU(),
nn.Linear(256, 256),
nn.PReLU(),
nn.Linear(256, 2)
)
编辑下一个错误:
改成这个
self.fc = nn.Sequential(nn.Linear(64 * 61 * 61, 256), #here is the change
nn.PReLU(),
nn.Linear(256, 256),
nn.PReLU(),
nn.Linear(256, 2)
)